Counting imaginary quadratic fields with an ideal class group of 5-rank at least 2

被引:0
作者
Bartz, Kollin [1 ]
Levin, Aaron [1 ]
Thamminana, Aman Dhruva [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Ideal class groups; Torsion in Jacobians; 5-rank; Imaginary quadratic fields; CLASS-NUMBERS; DIVISIBILITY;
D O I
10.1007/s11139-025-01184-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are >> X13(logX)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gg \frac{X<^>{\frac{1}{3}}}{(\log X)<^>2}$$\end{document} imaginary quadratic fields k with discriminant |dk|<= X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_k|\le X$$\end{document} and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound >> X14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gg X<^>{\frac{1}{4}}$$\end{document} in the same setting. We use a method of Howe, Lepr & eacute;vost, and Poonen to construct a genus 2 curve C over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document} such that C has a rational Weierstrass point and the Jacobian of C has a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curve C and a quantitative result of Kulkarni and the second author.
引用
收藏
页数:8
相关论文
共 19 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]   Real quadratic fields with class number divisible by 5 or 7 [J].
Byeon, D .
MANUSCRIPTA MATHEMATICA, 2006, 120 (02) :211-215
[3]   Imaginary quadratic fields with noncyclic ideal class groups [J].
Byeon, Dongho .
RAMANUJAN JOURNAL, 2006, 11 (02) :159-163
[4]   Quadratic fields with noncyclic 5-or 7-class groups [J].
Byeon, Dongho .
RAMANUJAN JOURNAL, 2009, 19 (01) :71-77
[5]  
CASSELS J. W. S., 1996, London Mathematical Society Lecture Note Series, V230
[6]   On the p-ranks of the ideal class groups of imaginary quadratic fields [J].
Chattopadhyay, Jaitra ;
Saikia, Anupam .
RAMANUJAN JOURNAL, 2023, 62 (02) :571-581
[7]  
Gillibert J, 2012, MATH RES LETT, V19, P1171, DOI 10.4310/MRL.2012.v19.n6.a1
[8]  
Heath-Brown R, 2007, FUNCT APPROX COMMENT, V37, P203
[9]   Large torsion subgroups of split Jacobians of curves of genus two or three [J].
Howe, EW ;
Leprévost, F ;
Poonen, B .
FORUM MATHEMATICUM, 2000, 12 (03) :315-364
[10]   Hilbert's Irreducibility Theorem and ideal class groups of quadratic fields [J].
Kulkarni, Kaivalya R. ;
Levin, Aaron .
ACTA ARITHMETICA, 2022, 205 (04) :371-380