Integrating UAS-Based GNSS-R, LiDAR, and Multispectral Data for Soil Moisture Estimation: Summary of Results From a Three-Year-Long Field Campaign

被引:0
作者
Farhad, Md Mehedi [1 ]
Senyurek, Volkan [2 ]
Rafi, Mohammad Abdus Shahid [2 ]
Baray, Sriman Bidhan [1 ]
McCraine, Cary [2 ]
Hathcock, Lee A. [2 ]
Adeli, Ardeshir [3 ]
Huang, Yanbo [3 ]
Gurbuz, Ali C. [4 ]
Kurum, Mehmet [1 ]
机构
[1] Univ Georgia, Sch Elect & Comp Engn, Athens, GA 30602 USA
[2] Mississippi State Univ, Mississippi State, MS 39672 USA
[3] ARS, USDA, Genet & Sustainable Agr Res Unit, Mississippi State, MS 39762 USA
[4] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Global navigation satellite system; Receivers; Soil measurements; Receiving antennas; Surface roughness; Rough surfaces; Land surface; Satellites; Laser radar; Vegetation mapping; Global navigation satellite system reflectometry (GNSS-R); L-band; light detection and ranging (LiDAR); multispectral; precision agriculture (PA); reflectometry; soil moisture; uncrewed aircraft system (UAS); MODEL; REFLECTIVITY; PERFORMANCE; WATER;
D O I
10.1109/JSTARS.2025.3580114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and high-resolution soil moisture (SM) measurement is a critical component for site-specific precision agriculture (PA) management. Efficiently observing SM at high resolution on a subfield scale can enhance irrigation planning and management, leading to improved yields and product quality while also conserving environmental resources. However, obtaining such detailed SM measurements across large fields remains a significant challenge. Uncrewed aircraft systems (UASs) offer a promising solution in this regard. While microwave remote sensing via satellites has gained popularity for retrieving spatially distributed SM on regional and global scales, it falls short in delivering the high-resolution measurements needed for subfield applications. In response, this study has developed a UAS-based passive global navigation satellite system reflectometry (GNSS-R) technique to retrieve a high-resolution SM map at the subfield scale, designed for PA. This approach employs custom-made UASs equipped with a low-cost GNSS receiver and ancillary sensor systems. The experiment spans three years of data collection over 2.31 hectares of corn and cotton fields, incorporating GNSS-R, multispectral imaging, light detection and ranging, and in situ SM measurements. This article examines the impact of receiver antenna characteristics, surface factors, and GNSS constellations on GNSS-R measurements. It also identifies relevant features and normalization techniques that contribute to reliable SM estimation. The results highlight both the potential and the challenges of using UAS-based GNSS-R for accurate and reliable SM measurement in PA.
引用
收藏
页码:16896 / 16915
页数:20
相关论文
共 46 条
[1]   On-the-go soil sensors for precision agriculture [J].
Adamchuk, VI ;
Hummel, JW ;
Morgan, MT ;
Upadhyaya, SK .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2004, 44 (01) :71-91
[2]   CALIBRATION OF THE AIRBORNE POLARIMETRIC GNSS-R SENSOR FOR THE RONGOWAI PROJECT [J].
Bai, Dinan ;
Ruf, Chris ;
O'Brien, Andrew ;
Moller, Delwyn .
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, :725-728
[3]   Sentinel-1 soil moisture at 1 km resolution: a validation study [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Lovergine, Francesco P. ;
Palmisano, Davide ;
Peng, Jian ;
Marzahn, Philip ;
Wegmuller, Urs ;
Cartus, Oliver ;
Dabrowska-Zielinska, Katarzyna ;
Musial, Jan P. ;
Davidson, Malcolm W. J. ;
Pauwels, Valentijn R. N. ;
Cosh, Michael H. ;
McNairn, Heather ;
Johnson, Joel T. ;
Walker, Jeffrey P. ;
Yueh, Simon H. ;
Entekhabi, Dara ;
Kerr, Yann H. ;
Jackson, Thomas J. .
REMOTE SENSING OF ENVIRONMENT, 2021, 263
[4]   Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT) [J].
Bartalis, Zoltan ;
Wagner, Wolfgang ;
Naeimi, Vahid ;
Hasenauer, Stefan ;
Scipal, Klaus ;
Bonekamp, Hans ;
Figa, Julia ;
Anderson, Craig .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (20)
[5]   GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets [J].
Cardellach, E. ;
Fabra, F. ;
Nogues-Correig, O. ;
Oliveras, S. ;
Ribo, S. ;
Rius, A. .
RADIO SCIENCE, 2011, 46
[6]   First Results of a GNSS-R Experiment From a Stratospheric Balloon Over Boreal Forests [J].
Carreno-Luengo, Hugo ;
Camps, Adriano ;
Querol, Jorge ;
Forte, Giuseppe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05) :2652-2663
[7]   Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture [J].
Chew, C. C. ;
Small, E. E. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) :4049-4057
[8]   A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion [J].
De Roo, RD ;
Du, Y ;
Ulaby, FT ;
Dobson, MC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (04) :864-872
[9]   BISTATIC SPECULAR SCATTERING FROM ROUGH DIELECTRIC SURFACES [J].
DEROO, RD ;
ULABY, FT .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (02) :220-231
[10]   MICROWAVE DIELECTRIC BEHAVIOR OF WET SOIL .2. DIELECTRIC MIXING MODELS [J].
DOBSON, MC ;
ULABY, FT ;
HALLIKAINEN, MT ;
ELRAYES, MA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (01) :35-46