Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization

被引:8
作者
Akman D. [1 ]
Akman O. [2 ]
Schaefer E. [3 ]
机构
[1] University of Illinois Urbana-Champaign, United States
[2] Illinois State University, United States
[3] Marymount University, United States
关键词
Particle swarm optimization (PSO);
D O I
10.1155/2018/9160793
中图分类号
学科分类号
摘要
Researchers using ordinary differential equations to model phenomena face two main challenges among others: implementing the appropriate model and optimizing the parameters of the selected model. The latter often proves difficult or computationally expensive. Here, we implement Particle Swarm Optimization, which draws inspiration from the optimizing behavior of insect swarms in nature, as it is a simple and efficient method for fitting models to data. We demonstrate its efficacy by showing that it outstrips evolutionary computing methods previously used to analyze an epidemic model. © 2018 Devin Akman et al.
引用
收藏
相关论文
共 19 条
[1]  
Krueger J.M., Parameter Estimation Methods for Ordinary Differential Equation Models with Applications to Microbiology, (2017)
[2]  
Akman O., Schaefer E., An evolutionary computing approach for parameter estimation investigation of a model for cholera, Journal of Biological Dynamics, 9, pp. 147-158, (2015)
[3]  
Akman O., Corby M.R., Schaefer E., Examination of models for cholera: Insights into model comparison methods, Letters in Biomathematics, 3, 1, pp. 93-118, (2016)
[4]  
Scitovski R., Jukic D., A method for solving the parameter identification problem for ordinary differential equations of the second order, Applied Mathematics and Computation, 74, 2, pp. 273-291, (1996)
[5]  
Tutkun N., Parameter estimation in mathematical models using the real coded genetic algorithms, Expert Systems with Applications, 36, 2, pp. 3342-3345, (2009)
[6]  
Khalik M.A., Sherif M., Saraya S., Areed F., Parameter identification problem: Real-coded GA approach, Applied Mathematics and Computation, 187, 2, pp. 1495-1501, (2007)
[7]  
Nyarko E.K., Scitovski R., Solving the parameter identification problem of mathematical models using genetic algorithms, Applied Mathematics and Computation, 153, 3, pp. 651-658, (2004)
[8]  
Lazinica A., Particle Swarm Optimization, (2009)
[9]  
Hallam J.W., Akman O., Akman F., Genetic algorithms with shrinking population size, Computational Statistics, 25, 4, pp. 691-705, (2010)
[10]  
Clerc M., Standard Particle Swarm Optimisation (Rep), (2016)