Autonomous Orbit Determination of LLO Satellite Using DRO-LLO Links and Lunar Laser Ranging

被引:0
作者
Chen, Shixu [1 ]
Li, Shuanglin [1 ]
Pu, Jinghui [2 ]
Xu, Yingjie [1 ]
Wang, Wenbin [2 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
关键词
autonomous orbit determination; LLO; DRO; LiAISON; lunar laser ranging; NAVIGATION;
D O I
10.3390/aerospace12070576
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A stable and high-precision autonomous orbit determination scheme for a Low Lunar Orbit (LLO) spacecraft is proposed, leveraging satellite-to-satellite tracking (SST) measurement data and lunar laser ranging data. One satellite orbits around the LLO, while the other satellite orbits around the Distant Retrograde Orbit (DRO). An inter-satellite ranging link is established between the two satellites, while the LLO satellite conducts laser ranging with a Corner Cube Reflector (CCR) on the lunar surface. Both inter-satellite ranging data and lunar laser ranging data are acquired through measurements. By integrating these data with orbital dynamics and employing the Extended Kalman Filter (EKF) method, the position and velocity states of the two formation satellites are estimated. This orbit determination scheme operates independently of ground measurement and control stations, achieving a high degree of autonomy. Simulation results demonstrate that the position accuracy of the LLO satellite can reach 0.1 m, and that of the DRO satellite can reach 10 m. Compared to the autonomous orbit determination scheme relying solely on SST measurement data, this proposed scheme exhibits several advantages, including shorter convergence time, higher convergence accuracy, and enhanced robustness of the navigation system against initial orbit errors and orbital dynamic model errors. It can provide a valuable engineering reference for the autonomous navigation of lunar-orbiting satellites.
引用
收藏
页数:18
相关论文
共 31 条
[1]   Fifteen Years of Millimeter Accuracy Lunar Laser Ranging with APOLLO: Data Set Characterization [J].
Battat, J. B. R. ;
Adelberger, E. ;
Colmenares, N. R. ;
Farrah, M. ;
Gonzales, D. P. ;
Hoyle, C. D. ;
Mcmillan, R. J. ;
Murphy, T. W. ;
Sabhlok, S. ;
Stubbs, C. W. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2023, 135 (1052)
[2]  
Bridenstine J., 2020, NASA's Lunar Exploration Program Overview
[3]  
Cappelletti C., 2020, Cubesat Handbook: From Mission Design to Operations, V1st
[4]  
Choi S.J., 2018, P AAS AIAA ASTR SPEC
[5]  
Gardner T., 2021, P SMALL SAT C VIRT C
[6]  
Grenfell P., 2024, Ph.D. Thesis
[7]   Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) [J].
Hesar, Siamak G. ;
Parker, Jeffrey S. ;
Leonard, Jason M. ;
McGranaghan, Ryan M. ;
Born, George H. .
ACTA ASTRONAUTICA, 2015, 117 :116-129
[8]  
Hill K.A., 2007, Ph.D. Thesis
[9]   Autonomous interplanetary orbit determination using satellite-to-satellite tracking [J].
Hill, Keric ;
Born, George H. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (03) :679-686
[10]   Orbit determination of a cislunar space probe using Inter-Satellite Link data [J].
Huang, Yong ;
Yang, Peng ;
Chen, Yanling ;
Li, Peijia ;
Zhou, Shanshi ;
Tang, Chengpan ;
Hu, Xiaogon .
SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (02)