WELL-POSEDNESS, BLOW UP AND ASYMPTOTIC STABILITY FOR FRACTIONAL PSEUDO-PARABOLIC EQUATION INVOLVING MEMORY AND LOGARITHMIC TERMS

被引:0
作者
Di, Huafei [1 ]
Qiu, Yi [1 ]
Peng, Xiaoming [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2025年
关键词
Fractional pseudo-parabolic equation; memory and logarithmic terms; well-posedness; asymptotic stability; blow up; WAVE-EQUATION; GLOBAL EXISTENCE; NONEXISTENCE; DECAY;
D O I
10.3934/dcdss.2025111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Herein, we investigate the fractional pseudo-parabolic equation incorporating memory effect and logarithmic term eta t + (-triangle)s eta + (-triangle)s eta t = f0t k(t-A)(-triangle)s eta(A)dA + |eta |r-2 eta ln|eta| subject to Dirichlet boundary condition across various initial energy levels. To begin with, the local existence and uniqueness of weak solutions are rigorously established at any initial energy level via Galerkin approximation and contraction mapping principle. In addition, through the effective combination of Galerkin approximation, modified potential well theory, perturbed energy method and convexity theory etc, we explore the global existence and uniqueness, exponential and polynomial energy decay, as well as finite time blow up phenomena under low initial energy and critical initial energy levels.
引用
收藏
页数:30
相关论文
共 32 条
[1]   BOUNDS FOR BLOW-UP SOLUTIONS OF A SEMILINEAR PSEUDO-PARABOLIC EQUATION WITH A MEMORY TERM AND LOGARITHMIC NONLINEARITY IN VARIABLE SPACE [J].
Abita, Rahmoune .
MATHEMATICA SCANDINAVICA, 2022, 128 (03) :553-572
[2]  
AlShin AB, 2011, DEGRUYTER SER NONLIN, V15, P1
[3]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[4]   Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Grau, Vicente ;
Rodriguez, Blanca ;
Burrage, Kevin .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
[5]   A class of diffusion problem of Kirchhoff type with viscoelastic term involving the fractional Laplacian [J].
Cabanillas Lapa, Eugenio ;
Huaringa Segura, Zacarias L. ;
Bernui Barros, Juan B. ;
Trujillo Flores, Eduardo, V .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04) :543-559
[6]  
Cao Y, 2018, ELECTRON J DIFFER EQ
[7]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[8]  
Del-Castillo-Negrete D., 2012, Physics of Plasmas, V19, P355
[9]   THE REGULARIZED SOLUTION APPROXIMATION OF FORWARD/BACKWARD PROBLEMS FOR A FRACTIONAL PSEUDO-PARABOLIC EQUATION WITH RANDOM NOISE [J].
Di, Huafei ;
Rong, Weijie .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) :324-348
[10]   Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term [J].
Di, Huafei ;
Shang, Yadong ;
Yu, Jiali .
AIMS MATHEMATICS, 2020, 5 (04) :3408-3422