Electronic Effect of Self-Assembled Molecules on Buried Interface Recombination in n-i-p Perovskite Solar Cells

被引:0
作者
Zhang, Liu [1 ]
Wang, Chenyu [1 ]
Wei, Yunxiao [1 ]
Chen, Jie [1 ]
Xin, Haimeng [2 ]
Zhang, Hengyu [2 ]
Liu, Tiantian [1 ]
Lin, Ping [1 ]
Wang, Peng [1 ]
Wu, Xiaoping [1 ]
Yu, Xuegong [2 ]
Ni, Zhenyi [2 ]
Cui, Can [1 ]
Xu, Lingbo [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Zhejiang Key Lab Quantum State Control & Opt Field, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; buried interface; self-assembledmolecules; energy-level alignment; interfacial recombination; PASSIVATION; PERFORMANCE; EFFICIENCY;
D O I
10.1021/acsami.5c09978
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfacial recombination at the defective buried interface of perovskite solar cells (PSCs) has long been a persistent and formidable challenge. Introducing molecular bridge via self-assembled molecules (SAMs) offers an effective strategy to mitigate this issue, primarily by chemically passivating interfacial defects that cause nonradiative recombination. However, the influence of SAMs on radiative recombination is often overlooked. In this study, two SAMs with similar molecular configurations but distinct electron-donating/-withdrawing characters-3-thiopheneboronic acid (TBA) and 4-pyridineboronic acid (PBA)-are introduced at the buried interface of n-i-p PSCs. Although both SAMs effectively passivate defects, the PSCs based on them exhibit contrasting trends of performance gain and loss for PBA and TBA, respectively. Mechanistic investigations reveal that TBA featuring an electron-donating thiophene group induces n-type doping in the SnO2 electron transport layer and exacerbates radiative recombination loss, while PBA with the electron-withdrawing pyridine group behaves in an opposite way. These findings highlight the critical role of the electronic effects of SAMs on buried interface recombination beyond their defect passivation function. The trade-off between these two effects is essential for optimizing buried interface engineering through SAMs.
引用
收藏
页码:41342 / 41349
页数:8
相关论文
共 47 条
[1]   Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations [J].
Brandstetter, S. ;
Derlet, P. M. ;
Van Petegem, S. ;
Van Swygenhoven, H. .
ACTA MATERIALIA, 2008, 56 (02) :165-176
[2]   In situ Crosslinked Robust Molecular Zipper at the Buried Interface for Perovskite Photovoltaics [J].
Cao, Yingyi ;
Zhang, Xu ;
Zhao, Ke ;
Wei, Yunxiao ;
Zhang, Liu ;
Zhang, Hengyu ;
Wang, Wenchuan ;
Cui, Can ;
Wang, Peng ;
Lin, Ping ;
Wu, Xiaoping ;
Song, Changsheng ;
Ni, Zhenyi ;
Xue, Jingjing ;
Wang, Rui ;
Xu, Lingbo .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (28)
[3]   Ca(CF3SO3)2 all-in-one modification on CsPbI3 all-inorganic perovskite solar cells for improved performance and stability [J].
Chang, Binbin ;
Yuan, Yuqi ;
Hou, Linsong ;
Wang, Wanjiang ;
Lin, Ping ;
Wang, Peng ;
Wu, Xiaoping ;
Yu, Xuegong ;
Xu, Lingbo ;
Cui, Can .
APPLIED PHYSICS LETTERS, 2024, 124 (21)
[4]   Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Park, Nam-Gyu .
ACS ENERGY LETTERS, 2020, 5 (08) :2742-2786
[5]   Regulating cation arrangements for high-performance lead-free Cs2AgBiBr6 double perovskite photodetectors via modified green antisolvent engineering [J].
Chen, Jie ;
Hou, Linsong ;
Rao, Tongming ;
Wang, Wanjiang ;
Chang, Binbin ;
Yuan, Yuqi ;
Wu, Xiaoping ;
Lin, Ping ;
Wang, Peng ;
Cui, Can ;
Ni, Zhenyi ;
Xu, Lingbo .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 232 :115-122
[6]   Air-Processed Perovskites Enabled by an Interface-Reconstruction Strategy for High-Performance Light-Emitting Diodes [J].
Cheng, Yuanzhuang ;
Chen, Jiawei ;
Wu, Shan ;
Zhu, Danlei ;
Liu, Xiangyu ;
Yan, Xinghua ;
Dong, Shuyue ;
Xiong, Yaonan ;
Chen, Shulin ;
Liu, Kong ;
Duan, Lian ;
Ma, Dongxin .
NANO LETTERS, 2025, 25 (15) :6192-6199
[7]   Improving Crystallization of Wide-Bandgap Lead Halide Perovskite for All-perovskite Tandems [J].
Du, Shengjie ;
Guo, Yaxiong ;
Wang, Chen ;
Chen, Guoyi ;
Li, Guang ;
Liang, Jiwei ;
Chen, Weiqing ;
Yu, Zhiqiu ;
Ge, Yansong ;
Jia, Peng ;
Guan, Hongling ;
Yu, Zixi ;
Cui, Hongsen ;
Yu, Zhenhua ;
Ke, Weijun ;
Fang, Guojia .
ADVANCED ENERGY MATERIALS, 2024,
[8]   Defective MnO2 functional separator coating as effective polysulfide mediators for lithium-sulfur batteries [J].
Feng, Yan-Qi ;
Lu, Qiong-Qiong ;
Liu, Hui .
TUNGSTEN, 2024, 6 (03) :536-543
[9]   Seed-Crystal-Assisted Space-Confined Growth of FASnI3 Quasi-Single-Crystal Thick Films and Their Photodetection Characteristics [J].
Gao, Weiyin ;
Liu, Xin ;
Jin, Hangfan ;
Li, Wangyue ;
Wang, Xiaobo ;
Huang, Rui ;
Xing, Gang ;
Dong, He ;
Zhou, Yipeng ;
Wu, Zhongbin ;
Ran, Chenxin .
ACS ENERGY LETTERS, 2024, 9 (10) :5045-5055
[10]   Advances in perovskite lasers [J].
Guan, Zhicheng ;
Zhang, Hengyu ;
Yang, Guang .
JOURNAL OF SEMICONDUCTORS, 2025, 46 (04)