Optimal bounds for the first eigenvalue of fourth-order beam equations with integrable potentials

被引:0
作者
Cheng, Yongkang [1 ]
Meng, Gang [1 ]
Qian, Zhi [1 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Optimization problem; Beam equations; Integrable potential; MEASURE DIFFERENTIAL-EQUATIONS; EXTREMAL PROBLEMS; MINIMIZATION;
D O I
10.1007/s10231-025-01592-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the optimization problems of the first eigenvalue for the fourth-order beam equations with integrable potentials, given the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>1$$\end{document} norm of the potentials. We reduce these infinite-dimensional optimization problems of implicit functionals to finite-dimensional ones and derive optimal bounds for the first eigenvalue. Our results can be regarded as a contribution to the literature by developing a methodological framework for solving these infinite-dimensional optimization problems.
引用
收藏
页数:18
相关论文
共 29 条
[1]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[2]   OPTIMAL BOUNDS FOR RATIOS OF EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH DIRICHLET BOUNDARY-CONDITIONS AND POSITIVE POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :403-415
[4]   OPTIMAL LOCATION OF RESOURCES FOR BIASED MOVEMENT OF SPECIES: THE 1D CASE [J].
Caubet, Fabien ;
Deheuvels, Thibaut ;
Privat, Yannick .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (06) :1876-1903
[5]   Minimizations of positive periodic and Dirichlet eigenvalues for general indefinite Sturm-Liouville problems [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Zhi .
ADVANCES IN MATHEMATICS, 2023, 432
[6]   Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations [J].
Chu, Jifeng ;
Meng, Gang .
MATHEMATISCHE ANNALEN, 2024, 388 (02) :1205-1224
[7]   Minimization of lowest positive periodic eigenvalue for the Camassa-Holm equation with indefinite potential [J].
Chu, Jifeng ;
Meng, Gang .
STUDIA MATHEMATICA, 2023, 268 (03) :241-258
[8]   Continuity and minimization of spectrum related with the periodic Camassa-Holm equation [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1678-1695
[9]   On the inverse spectral problem for the Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (02) :352-363
[10]  
Constantin A., 1997, Ann. Sc. Norm. Super. Pisa, V24, P767