HYPERSPECTRAL AND LIDAR DATA CLASSIFICATION BASED ON LINEAR SELF-ATTENTION

被引:12
作者
Feng, Min [1 ,2 ]
Gao, Feng [1 ,2 ]
Fang, Jian [1 ,2 ]
Dong, Junyu [1 ,2 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Qingdao, Peoples R China
[2] Ocean Univ China, Inst Marine Dev, Qingdao, Peoples R China
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
基金
中国国家自然科学基金;
关键词
hyperspectral image; LiDAR; cross-modal data fusion; classification; FUSION;
D O I
10.1109/IGARSS47720.2021.9553769
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, an efficient linear self-attention fusion model is proposed for the task of hyperspectral image (HSI) and LiDAR data joint classification. The proposed method is comprised of a feature extraction module, an attention module, and a fusion module. The attention module is a plug-and-play linear self-attention module that can be extensively used in any model. The proposed model has achieved the overall accuracy of 95.40% on the Houston dataset. The experimental results demonstrate the superiority of the proposed method over other state-of-the-art models.
引用
收藏
页码:2401 / 2404
页数:4
相关论文
共 10 条
[1]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[2]   Discriminative Graph-Based Fusion of HSI and LiDAR Data for Urban Area Classification [J].
Gu, Yanfeng ;
Wang, Qingwang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (06) :906-910
[3]   Classification of Hyperspectral and LiDAR Data Using Coupled CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Ghamisi, Pedram ;
Hong, Danfeng ;
Xia, Guiyu ;
Liu, Qingshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4939-4950
[4]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[5]   A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification [J].
Li, Heng-Chao ;
Hu, Wen-Shuai ;
Li, Wei ;
Li, Jun ;
Du, Qian ;
Plaza, Antonio .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) :747-761
[6]   Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features [J].
Liao, Wenzhi ;
Pizurica, Aleksandra ;
Bellens, Rik ;
Gautama, Sidharta ;
Philips, Wilfried .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :552-556
[7]   FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification [J].
Mohla, Satyam ;
Pande, Shivam ;
Banerjee, Biplab ;
Chaudhuri, Subhasis .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :416-425
[8]   Context-Aware Multi-View Summarization Network for Image-Text Matching [J].
Qu, Leigang ;
Liu, Meng ;
Cao, Da ;
Nie, Liqiang ;
Tian, Qi .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :1047-1055
[9]   HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Krishna, Gopal ;
Dubey, Shiv Ram ;
Chaudhuri, Bidyut B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) :277-281
[10]   Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN [J].
Zhang, Mengmeng ;
Li, Wei ;
Du, Qian ;
Gao, Lianru ;
Zhang, Bing .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (01) :100-111