Lagrangian duality in quantum optimization: Overcoming QUBO limitations for constrained problems

被引:0
作者
Gabbassov, Einar [1 ,2 ]
Rosenberg, Gili [1 ,3 ]
Scherer, Artur [1 ]
机构
[1] 1QB Informat Technol 1QBit, Vancouver, BC, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
[3] Amazon Quantum Solut Lab, Seattle, WA 98170 USA
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 02期
关键词
ENTANGLEMENT; COMPUTATION;
D O I
10.1103/53gd-2374
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an approach to solving constrained combinatorial optimization problems based on embedding the concept of Lagrangian duality into the framework of adiabatic quantum computation. Within the setting of circuit-model fault-tolerant quantum computation, we demonstrate that this approach achieves a quadratic improvement in circuit depth and maintains a constraint-independent circuit width in contrast with the prevalent approach of solving constrained problems via reformulations based on the quadratic unconstrained binary optimization (QUBO) framework. In this study, we include a detailed review of the limitations encountered when using QUBO for constrained optimization. We show that the proposed method overcomes these limitations by encoding the optimal solution at an energetically elevated level of a simpler problem Hamiltonian, which results in substantially more resource-efficient quantum circuits. We consolidate our strategy with a detailed analysis on how the concepts of Lagrangian duality such as duality gap and complementary slackness relate to the success probability of sampling the optimal solution. Our findings are illustrated by benchmarking the Lagrangian dual approach against the QUBO approach using the NP-complete binary knapsack problem.
引用
收藏
页数:18
相关论文
共 47 条
[1]   Quantum error correction below the surface code threshold [J].
Acharya, Rajeev ;
Abanin, Dmitry A. ;
Aghababaie-Beni, Laleh ;
Aleiner, Igor ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Astrakhantsev, Nikita ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Ballard, Brian ;
Bardin, Joseph C. ;
Bausch, Johannes ;
Bengtsson, Andreas ;
Bilmes, Alexander ;
Blackwell, Sam ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Browne, David A. ;
Buchea, Brett ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Cabrera, Anthony ;
Campero, Juan ;
Chang, Hung-Shen ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Chik, Desmond ;
Chou, Charina ;
Claes, Jahan ;
Cleland, Agnetta Y. ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Das, Sayan ;
Davies, Alex .
NATURE, 2024, :920-926
[2]   Suppressing quantum errors by scaling a surface code logical qubit [J].
Acharya, Rajeev ;
Aleiner, Igor ;
Allen, Richard ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Basso, Joao ;
Bengtsson, Andreas ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Debroy, Dripto M. ;
Barba, Alexander Del Toro ;
Demura, Sean ;
Dunsworth, Andrew ;
Eppens, Daniel ;
Erickson, Catherine ;
Faoro, Lara ;
Farhi, Edward ;
Fatemi, Reza ;
Burgos, Leslie Flores ;
Forati, Ebrahim ;
Fowler, Austin G. ;
Foxen, Brooks ;
Giang, William ;
Gidney, Craig ;
Gilboa, Dar .
NATURE, 2023, 614 (7949) :676-+
[3]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[4]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[5]  
Ambainis A, 2006, Arxiv, DOI arXiv:quant-ph/0411152
[6]   QUANTUM STOCHASTIC OPTIMIZATION [J].
APOLLONI, B ;
CARVALHO, C ;
DEFALCO, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 33 (02) :233-244
[7]   Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer [J].
Aramon, Maliheh ;
Rosenberg, Gili ;
Valiante, Elisabetta ;
Miyazawa, Toshiyuki ;
Tamura, Hirotaka ;
Katzgraber, Helmut G. .
FRONTIERS IN PHYSICS, 2019, 7 (APR)
[8]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[9]   Realizable Hamiltonians for universal adiabatic quantum computers [J].
Biamonte, Jacob D. ;
Love, Peter J. .
PHYSICAL REVIEW A, 2008, 78 (01)
[10]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]