Research on Optimal Motion Decision and Trajectory Generation for Table Tennis Robot

被引:0
作者
Qiu, Minghao [1 ]
Wang, Zhijie [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
来源
2021 IEEE 4TH INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING, AUTEEE | 2021年
关键词
table tennis robot; optimal; motion decision; Gaussian process regression; trajectory generation;
D O I
10.1109/AUTEEE52864.2021.9668824
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The success for robot's playing table tennis often hinges on quickly and accurately deciding when, where and how to hit the ball. In this article, we formulate this task as a non-linear optimization problem which aims to minimize a cost function related to input aggressiveness. Besides, we proposed a data-driven method for robot's motion decision based on Gaussian process regression. Furthermore, considering the robot's kinematic and dynamic constraints, we introduce a 2-stage trajectory generator with low computational cost. Eventually, we evaluate their performance in simulation with Kuka LBR iiwa 7 R800 and the results indicate that the presented methods are highly efficient in robot's hitting table tennis.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 13 条
[1]  
Bertsekas D.P., 2005, Dynamic Programming and Optimal Control, VVolume 1
[2]   TIME-OPTIMAL CONTROL OF ROBOTIC MANIPULATORS ALONG SPECIFIED PATHS [J].
BOBROW, JE ;
DUBOWSKY, S ;
GIBSON, JS .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1985, 4 (03) :3-17
[3]  
Chunfang Liu, 2012, SICE Journal of Control, Measurement, and System Integration, V5, P233, DOI 10.9746/jcmsi.5.233
[4]  
Ebden M., 2015, Gaussian Processes: A Quick Introduction
[5]   Online optimal trajectory generation for robot table tennis [J].
Koc, Okan ;
Maeda, Guilherme ;
Peters, Jan .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 :121-137
[6]  
Lampariello R., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P3719, DOI 10.1109/ICRA.2011.5980114
[7]  
Moberg S., 2009, Inverse Dynamics of Flexible Manipulators
[8]   A Computationally Efficient Motion Primitive for Quadrocopter Trajectory Generation [J].
Mueller, Mark W. ;
Hehn, Markus ;
D'Andrea, Raffaello .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) :1294-1310
[9]   Learning to select and generalize striking movements in robot table tennis [J].
Muelling, Katharina ;
Kober, Jens ;
Kroemer, Oliver ;
Peters, Jan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (03) :263-279
[10]   A biomimetic approach to robot table tennis [J].
Muelling, Katharina ;
Kober, Jens ;
Peters, Jan .
ADAPTIVE BEHAVIOR, 2011, 19 (05) :359-376