NASA Neural Articulated Shape Approximation

被引:130
作者
Deng, Boyang [1 ]
Lewis, J. P. [1 ]
Jeruzalski, Timothy [1 ]
Pons-Moll, Gerard [2 ]
Hinton, Geoffrey [1 ]
Norouzi, Mohammad [1 ]
Tagliasacchi, Andrea [1 ,3 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] MPI Informat, Saarland Informat Campus, Saarbrucken, Germany
[3] Univ Toronto, Toronto, ON, Canada
来源
COMPUTER VISION - ECCV 2020, PT VII | 2020年 / 12352卷
关键词
3D deep learning; Neural object representation; Articulated objects; Deformation; Skinning; Occupancy; Neural implicit functions;
D O I
10.1007/978-3-030-58571-6_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient representation of articulated objects such as human bodies is an important problem in computer vision and graphics. To efficiently simulate deformation, existing approaches represent 3D objects using polygonal meshes and deform them using skinning techniques. This paper introduces neural articulated shape approximation (NASA), an alternative framework that enables representation of articulated deformable objects using neural indicator functions that are conditioned on pose. Occupancy testing using NASA is straightforward, circumventing the complexity of meshes and the issue of water-tightness. We demonstrate the effectiveness of NASA for 3D tracking applications, and discuss other potential extensions.
引用
收藏
页码:612 / 628
页数:17
相关论文
共 57 条
[1]  
Anguelov D., 2004, Uncertainty in Artificial Intelligence
[2]  
[Anonymous], 2014, ACM SIGGRAPH 2014 CO, DOI DOI 10.1145/2614028.2615427
[3]  
Atzmon M, 2020, Arxiv, DOI arXiv:1911.10414
[4]   Fast and Deep Deformation Approximations [J].
Bailey, Stephen W. ;
Otte, Dave ;
Dilorenzo, Paul ;
O'Brien, James F. .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[5]   Dynamic FAUST: Registering Human Bodies in Motion [J].
Bogo, Federica ;
Romero, Javier ;
Pons-Moll, Gerard ;
Black, Michael J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5573-5582
[6]   Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image [J].
Bogo, Federica ;
Kanazawa, Angjoo ;
Lassner, Christoph ;
Gehler, Peter ;
Romero, Javier ;
Black, Michael J. .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :561-578
[7]   Sparse Iterative Closest Point [J].
Bouaziz, Sofien ;
Tagliasacchi, Andrea ;
Pauly, Mark .
COMPUTER GRAPHICS FORUM, 2013, 32 (05) :113-123
[8]   BAE-NET: Branched Autoencoder for Shape Co-Segmentation [J].
Chen, Zhiqin ;
Yin, Kangxue ;
Fisher, Matthew ;
Chaudhuri, Siddhartha ;
Zhang, Hao .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8489-8498
[9]   Learning Implicit Fields for Generative Shape Modeling [J].
Chen, Zhiqin ;
Zhang, Hao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5932-5941
[10]   Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion [J].
Chibane, Julian ;
Alldieck, Thiemo ;
Pons-Moll, Gerard .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6968-6979