Video Super-resolution with Temporal Group Attention

被引:151
作者
Isobe, Takashi [1 ,2 ]
Li, Songjiang [2 ]
Jia, Xu [2 ]
Yuan, Shanxin [2 ]
Slabaugh, Gregory [2 ]
Xu, Chunjing [2 ]
Li, Ya-Li [1 ]
Wang, Shengjin [1 ]
Tian, Qi [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Huawei Technol, Noahs Ark Lab, Shenzhen, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.00803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution, which aims at producing a high-resolution video from its corresponding low-resolution version, has recently drawn increasing attention. In this work, we propose a novel method that can effectively incorporate temporal information in a hierarchical way. The input sequence is divided into several groups, with each one corresponding to a kind of frame rate. These groups provide complementary information to recover missing details in the reference frame, which is further integrated with an attention module and a deep intra-group fusion module. In addition, a fast spatial alignment is proposed to handle videos with large motion. Extensive results demonstrate the capability of the proposed model in handling videos with various motion. It achieves favorable performance against state-of-the-art methods on several benchmark datasets. Code is available at https://github.com/junpan19/VSR_TGA.
引用
收藏
页码:8005 / 8014
页数:10
相关论文
共 35 条
[1]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[2]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[3]  
Glorot X., 2011, P 14 INT C ART INT S, P315, DOI DOI 10.1002/ECS2.1832
[4]   Recurrent Back-Projection Network for Video Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3892-3901
[5]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[6]  
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167
[7]  
Jia X., 2016, ADV NEUR IN
[8]   Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation [J].
Jo, Younghyun ;
Oh, Seoung Wug ;
Kang, Jaeyeon ;
Kim, Seon Joo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3224-3232
[9]   Video Super-Resolution With Convolutional Neural Networks [J].
Kappeler, Armin ;
Yoo, Seunghwan ;
Dai, Qiqin ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (02) :109-122
[10]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]