A neural network model for shape memory alloy actuation response with physical constraints for partial phase transformation

被引:0
作者
Joy, Jobin K. [1 ]
Haghgouyan, Behrouz [1 ]
Karakalas, Anargyros A. [1 ]
Vasoya, Manish [1 ]
Lagoudas, Dimitris C. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, 741A HR Bright,3141 TAMU, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX USA
关键词
Shape memory alloys; machine learning; neural networks; partial transformation; uncertainty quantification; CONSTITUTIVE MODEL; PREISACH MODEL; WIRE; NITI; IDENTIFICATION; CONTROLLERS; TRANSITION; IMPLANTS; DESIGN;
D O I
10.1177/1045389X251348269
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we demonstrate a data-based Machine Learning (ML) framework that can capture the strain evolution during Shape Memory Alloy (SMA) actuation with a minimum of four state variable inputs.These inputs describe the thermomechanical stress-strain state of the SMA and changes in the stress state during thermal actuation. Furthermore, we identify the physics-based constraints to incorporate partial phase transformation and make predictions beyond the training regime. The ML framework uses a recurrent neural network (RNN) model to capture the nonlinear strain rate variation during phase transformation. Physics-based constraints are introduced in the RNN model to include the activation of thermoelasticity, while unloading away from transformation surfaces within the thermoelastic domain. The framework is trained using experimental thermal cycle responses of a NiTiHf SMA at different stress levels. The framework can then accurately predict actuation responses undergoing complete and partial phase transformations, and also extrapolate responses for new thermal cycling that involve complex thermomechanical loading paths. An uncertainty quantification analysis using ensemble training of the NN model is also presented to show the variability of the framework.
引用
收藏
页码:875 / 893
页数:19
相关论文
共 65 条
[1]   A Shape Memory Alloy Constitutive Model with Polynomial Phase Transformation Kinetics [J].
Adeodato, Arthur ;
Vignoli, Lucas L. ;
Paiva, Alberto ;
Monteiro, Luciana L. S. ;
Pacheco, Pedro M. C. L. ;
Savi, Marcelo A. .
SHAPE MEMORY AND SUPERELASTICITY, 2022, 8 (04) :277-294
[2]   A new phenomenological constitutive model for shape memory alloys [J].
Alsawalhi, Mohammed Y. ;
Landis, Chad M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 257
[3]   An experimental study of the partial transformation cycling of shape-memory alloys [J].
Amengual, A ;
Likhachev, AA ;
Cesari, E .
SCRIPTA MATERIALIA, 1996, 34 (10) :1549-1554
[4]  
[Anonymous], 2019, version (R2019a)
[5]   Sensorless Control of SMA-based Actuators Using Neural Networks [J].
Asua, Estibalitz ;
Feutchwanger, Jorge ;
Garcia-Arribas, Alfredo ;
Etxebarria, Victor .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (18) :1809-1818
[6]   A 1D rate-dependent viscous constitutive model for superelastic shape-memory alloys: formulation and comparison with experimental data [J].
Auricchio, Ferdinando ;
Fugazza, Davide ;
DesRoches, Reginald .
SMART MATERIALS & STRUCTURES, 2007, 16 (01) :S39-S50
[7]  
Balasubramanian M., 2021, Journal of Physics: Conference Series, V2054, DOI 10.1088/1742-6596/2054/1/012078
[8]   Porous NiTi for bone implants: A review [J].
Bansiddhi, A. ;
Sargeant, T. D. ;
Stupp, S. I. ;
Dunand, D. C. .
ACTA BIOMATERIALIA, 2008, 4 (04) :773-782
[9]   Shape memory alloy actuator design: CASMART collaborative best practices and case studies [J].
Benafan, O. ;
Brown, J. ;
Calkins, F. T. ;
Kumar, P. ;
Stebner, A. P. ;
Turner, T. L. ;
Vaidyanathan, R. ;
Webster, J. ;
Young, M. L. .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2014, 10 (01) :1-42
[10]  
Brinson LC., 1993, Journal of Intelligent Material Systems and Structures, V4, P229, DOI DOI 10.1177/1045389X9300400213