Current Mode Control for High Frequency Piezoelectric Resonator-Based DC-DC Converters

被引:0
作者
Stolt, Eric [1 ]
Affolter, Martin [1 ]
Ye, Zhechi [1 ]
Rivas-Davila, Juan [1 ]
机构
[1] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Switches; DC-DC power converters; Control systems; Voltage control; Switching frequency; Topology; Timing; Zero voltage switching; Power system measurements; High frequency; Current control; dc-dc converter; lithium niobate; piezoelectric resonator; resonant power converter;
D O I
10.1109/TPEL.2025.3571873
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Theoretically, increasing dc-dc converter switching frequency enables smaller passive components and high system power density, as required by many applications. However, inductors and transformers intrinsically scale poorly to high frequency and small volumes, creating a bottleneck to realizing high frequency, high power density dc-dc converters. Designing dc-dc converters without inductors, and instead using piezoelectric resonators for passive energy storage, bypasses this bottleneck. While prototype piezoelectric resonator based dc-dc converters have demonstrated high power density and efficiency at MHz switching frequencies, these converters rely on open-loop control. Practical applications necessitate closed-loop control for these converters, but the present methods for closed-loop control do not scale to MHz frequencies. This article presents a closed-loop control method for piezoelectric resonator based dc-dc converters using current mode control, feedforward compensation, and real-time calculated switch timings. The method scales to MHz switching frequency and is demonstrated with a 750 kHz, 100 W, 99.3% efficient prototype converter using paralleled, radial mode lithium niobate resonators.
引用
收藏
页码:12730 / 12738
页数:9
相关论文
共 23 条
[1]  
Bigot Emile, 2024, IET Conference Proceedings, V2024, P146, DOI 10.1049/icp.2024.2150
[2]   Evaluating Piezoelectric Materials and Vibration Modes for Power Conversion [J].
Boles, Jessica D. ;
Bonavia, Joseph E. ;
Acosta, Pedro L. ;
Ramadass, Yogesh K. ;
Lang, Jeffrey H. ;
Perreault, David J. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) :3374-3390
[3]   Enumeration and Analysis of DC-DC Converter Implementations Based on Piezoelectric Resonators [J].
Boles, Jessica D. ;
Piel, Joshua J. ;
Perreault, David J. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (01) :129-145
[4]  
Braun Weston D., 2021, IEEE Open Journal of Power Electronics, V2, P212, DOI 10.1109/OJPEL.2021.3067020
[5]   A Stacked Piezoelectric Converter Using a Segmented IDT Lithium Niobate Resonator [J].
Braun, Weston D. ;
Stolt, Eric A. ;
Nguyen, Kristi ;
Segovia-Fernandez, Jeronimo ;
Chakraborty, Sombuddha ;
Lu, Ruochen ;
Rivas-Davila, Juan M. .
IEEE OPEN JOURNAL OF POWER ELECTRONICS, 2024, 5 :286-294
[6]   State Plane Feedforward Control for LLC Converter With Geometric Simplification [J].
Chen, Jie ;
Jiang, Lingfeng ;
Gong, Linxiao ;
Li, Jiahao ;
Peng, Yunfeng ;
Wang, Yong .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (10) :12469-12481
[7]   Nonlinear Losses and Material Limits of Piezoelectric Resonators for DC-DC Converters [J].
Daniel, Clarissa ;
Stolt, Eric ;
Braun, Weston ;
Lu, Ruochen ;
Rivas-Davila, Juan .
2024 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2024, :1560-1565
[8]  
Farooq M., 2024, P IEEE WORKSH CONTR, P1
[9]  
Hammerle F., 2017, Tech. Rep.
[10]  
Jang J, 2011, APPL POWER ELECT CO, P21, DOI 10.1109/APEC.2011.5744570