CGM-Freq: A Python']Python Library for Frequency Domain Analysis of Continuous Glucose Monitoring Data

被引:0
作者
Healey, Elizabeth [1 ]
Kohane, Isaac [2 ]
机构
[1] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
来源
2024 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI | 2024年
基金
美国国家科学基金会;
关键词
signal processing; continuous glucose monitoring;
D O I
10.1109/BHI62660.2024.10913828
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the number of patients using continuous glucose monitoring (CGM) has increased. In addition to helping patients manage their disease, CGM produces time series data that can be used for integration in control algorithms, predictive models, and for retrospective analyses. Through feature extraction, many digital biomarkers can be derived from CGM. In this work, we provide a tool to extract features derived from the frequency domain. We first introduce a novel open-source Python library, CGM-Freq, for the analysis of CGM data in the frequency domain. We then test the library on real data. This work provides an open-source tool to further investigate the frequency domain of CGM signals.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Introducing the Continuous Glucose Data Analysis (CGDA) R Package: An Intuitive Package to Analyze Continuous Glucose Monitoring Data [J].
Attaye, Ilias ;
van der Vossen, Eduard W. J. ;
Mendes Bastos, Diogo N. ;
Nieuwdorp, Max ;
Levin, Evgeni .
JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2022, 16 (03) :783-785
[2]   Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range [J].
Battelino, Tadej ;
Danne, Thomas ;
Bergenstal, Richard M. ;
Amiel, Stephanie A. ;
Beck, Roy ;
Biester, Torben ;
Bosi, Emanuele ;
Buckingham, Bruce A. ;
Cefalu, William T. ;
Close, Kelly L. ;
Cobelli, Claudio ;
Dassau, Eyal ;
DeVries, J. Hans ;
Donaghue, Kim C. ;
Dovc, Klemen ;
Doyle, Francis J. ;
Garg, Satish ;
Grunberger, George ;
Heller, Simon ;
Heinemann, Lutz ;
Hirsch, Irl B. ;
Hovorka, Roman ;
Jia, Weiping ;
Kordonouri, Olga ;
Kovatchev, Boris ;
Kowalski, Aaron ;
Laffel, Lori ;
Levine, Brian ;
Mayorov, Alexander ;
Mathieu, Chantal ;
Murphy, Helen R. ;
Nimri, Revital ;
Norgaard, Kirsten ;
Parkin, Christopher G. ;
Renard, Eric ;
Rodbard, David ;
Saboo, Banshi ;
Schatz, Desmond ;
Stoner, Keaton ;
Urakami, Tatsuiko ;
Weinzimer, Stuart A. ;
Phillip, Moshe .
DIABETES CARE, 2019, 42 (08) :1593-1603
[3]   BioSPPy: A Python']Python toolbox for physiological signal processing [J].
Bota, Patricia ;
Silva, Rafael ;
Carreiras, Carlos ;
Fred, Ana ;
da Silva, Hugo Placido .
SOFTWAREX, 2024, 26
[4]  
Breton Marc D, 2008, J Diabetes Sci Technol, V2, P495
[5]  
Cappon G., 2023, J. Diabetes Sci. Technol.
[6]  
Champagne B., 2004, Discrete time signal processing
[7]   GlyCulator 3.0: A Fast, Easy-to-Use Analytical Tool for CGM Data Analysis, Aggregation, Center Benchmarking, and Data Sharing [J].
Chrzanowski, Jedrzej ;
Grabia, Szymon ;
Michalak, Arkadiusz ;
Wielgus, Anna ;
Wykrota, Julia ;
Mianowska, Beata ;
Szadkowska, Agnieszka ;
Fendler, Wojciech .
DIABETES CARE, 2023, 46 (01) :E3-E5
[8]   An Update on the iglu Software Package for Interpreting Continuous Glucose Monitoring Data [J].
Chun, Elizabeth ;
Fernandes, Nathaniel J. ;
Gaynanova, Irina .
DIABETES TECHNOLOGY & THERAPEUTICS, 2024, 26 (12) :939-950
[9]  
Fico Giuseppe, 2017, J Diabetes Sci Technol, V11, P773, DOI 10.1177/1932296816685717
[10]   Frequency characterization of blood glucose dynamics [J].
Gough, DA ;
Kreutz-Delgado, K ;
Bremer, TM .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (01) :91-97