Weak differentiability for commutators of multilinear maximal functions of Sobolev functions on domains

被引:0
作者
Liu, Feng [1 ]
Zhang, Xiao [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect & Informat Engn, Qingdao 266590, Shandong, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2025年 / 205卷
基金
中国国家自然科学基金;
关键词
Multilinear maximal commutator; Sobolev space; Boundedness and continuity; Domains; REGULARITY; CONTINUITY; OPERATORS;
D O I
10.1016/j.bulsci.2025.103691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic study is given for weak differentiability for the commutators of multilinear maximal operators and multilinear maximal commutators associated with a vector-valued function b = (b1, ... , bm) as well as their fractional variants on domains, where each bibelongs to Lipschitz space. The bounds and continuity for the above commutators are established on the first order Sobolev spaces. The bounds for the above commutators are also proved on the Sobolev spaces with zero boundary values. (c) 2025 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:56
相关论文
共 38 条
[1]   A note on maximal commutators and commutators of maximal functions [J].
Agcayazi, Mujdat ;
Gogatishvili, Amiran ;
Koca, Kerim ;
Mustafayev, Rza .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) :581-593
[2]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[3]   Commutators for the maximal and sharp functions [J].
Bastero, J ;
Milman, M ;
Ruiz, FJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3329-3334
[4]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[5]   Endpoint Sobolev and BV continuity for maximal operators [J].
Carneiro, Emanuel } ;
Madrid, Jose ;
Pierce, Lillian B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (10) :3262-3294
[6]   DERIVATIVE BOUNDS FOR FRACTIONAL MAXIMAL FUNCTIONS [J].
Carneiro, Emanuel ;
Madrid, Jose .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) :4063-4092
[7]   REGULARITY OF COMMUTATORS OF MULTILINEAR MAXIMAL OPERATORS WITH LIPSCHITZ SYMBOLS [J].
Chen, Ting ;
Liu, Feng .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (01) :109-134
[8]  
Gilbarg D., 1983, GRUNDLEHREN MATH WIS
[9]   Continuity for the one-dimensional centered Hardy-Littlewood maximal operator at the derivative level [J].
Gonzalez-Riquelme, Cristian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (09)
[10]   Regularity and Continuity of Local Multilinear Maximal Type Operators [J].
Hart, Jarod ;
Liu, Feng ;
Xue, Qingying .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) :3405-3454