Single-Side Domain Generalization for Face Anti-Spoofing

被引:198
作者
Jia, Yunpei [1 ,2 ]
Zhang, Jie [1 ,2 ]
Shan, Shiguang [1 ,2 ,3 ]
Chen, Xilin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR42600.2020.00851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing domain generalization methods for face anti-spoofing endeavor to extract common differentiation features to improve the generalization. However, due to large distribution discrepancies among fake faces of different domains, it is difficult to seek a compact and generalized feature space for the fake faces. In this work, we propose an end-to-end single-side domain generalization framework (SSDG) to improve the generalization ability of face anti-spoofing. The main idea is to learn a generalized feature space, where the feature distribution of the real faces is compact while that of the fake ones is dispersed among domains but compact within each domain. Specifically, a feature generator is trained to make only the real faces from different domains undistinguishable, but not for the fake ones, thus forming a single-side adversarial learning. Moreover, an asymmetric triplet loss is designed to constrain the fake faces of different domains separated while the real ones aggregated. The above two points are integrated into a unified framework in an end-to-end training manner, resulting in a more generalized class boundary, especially good for samples from novel domains. Feature and weight normalization is incorporated to further improve the generalization ability. Extensive experiments show that our proposed approach is effective and outperforms the state-of-the-art methods on four public databases. The code is released online(1).
引用
收藏
页码:8481 / 8490
页数:10
相关论文
共 45 条
[1]  
Akuzawa K., 2019, ARXIV
[2]   Motion-based counter-measures to photo attacks in face recognition [J].
Anjos, Andre ;
Chakka, Murali Mohan ;
Marcel, Sebastien .
IET BIOMETRICS, 2014, 3 (03) :147-158
[3]  
[Anonymous], 2011, CVPR
[4]  
Atoum Y, 2017, 2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), P319, DOI 10.1109/BTAS.2017.8272713
[5]  
Bao W, 2009, PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING, P233
[6]   Face Antispoofing Using Speeded-Up Robust Features and Fisher Vector Encoding [J].
Boulkenafet, Zinelabidine ;
Komulainen, Jukka ;
Hadid, Abdenour .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (02) :141-145
[7]   Face Spoofing Detection Using Colour Texture Analysis [J].
Boulkenafet, Zinelabidine ;
Komulainen, Jukka ;
Hadid, Abdenour .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (08) :1818-1830
[8]   OULU-NPU: A mobile face presentation attack database with real-world variations [J].
Boulkenafet, Zinelabinde ;
Komulainen, Jukka ;
Li, Lei ;
Feng, Xiaoyi ;
Hadid, Abdenour .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :612-618
[9]  
Chingovska I., 2012, BIOSIG, P1
[10]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694