Simulating quantum field theories on near-term quantum devices

被引:0
作者
Williams, Simon [1 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2025年
关键词
Quantum simulation; quantum field theory; theoretical particle physics; LATTICE GAUGE-THEORIES; SCATTERING; COMPUTATION; ALGORITHMS; VACUUM; STATES; ERROR; MODEL;
D O I
10.1142/S0217751X25300108
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Quantum computing offers a paradigm shift in efficiently simulating quantum field theories (QFTs). In this review, we outline two new techniques for the simulation of QFTs on quantum devices. The first technique employs Hamiltonian Truncation (HT) for nonperturbative real-time QFT simulations on Noisy Intermediate-Scale Quantum (NISQ) devices. As a use case, we apply the HT approach to the Schwinger model. For the observables studied, HT avoids complex state preparation, reducing circuit depth and making the algorithm well suited for NISQ devices. Validated on the ibm_brisbane quantum computer with results showing good agreement with numerical simulations, HT presents an efficient alternative to lattice models. The second approach introduces a continuous-variable quantum computing (CVQC) framework for simulating the real-time dynamics of QFTs, where quantum field values are encoded directly into photonic qumodes. By avoiding the overhead of field digitization, CVQC enables scalable simulations using significantly fewer quantum resources than traditional qubit-based approaches. Classical emulation of the qumode lattice successfully reproduces scattering processes in (1+1)-dimensional phi 4 theory. Together, these methods demonstrate viable paths toward near-term quantum simulations of interacting field theories, offering complementary strategies to address challenges in nonperturbative studies in high-energy physics.
引用
收藏
页数:32
相关论文
共 115 条
[51]   Collider events on a quantum computer [J].
Gustafson, Gosta ;
Prestel, Stefan ;
Spannowsky, Michael ;
Williams, Simon .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (11)
[52]   Gaussian Boson Sampling [J].
Hamilton, Craig S. ;
Kruse, Regina ;
Sansoni, Linda ;
Barkhofen, Sonja ;
Silberhorn, Christine ;
Jex, Igor .
PHYSICAL REVIEW LETTERS, 2017, 119 (17)
[53]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[54]   Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions [J].
Hauke, P. ;
Marcos, D. ;
Dalmonte, M. ;
Zoller, P. .
PHYSICAL REVIEW X, 2013, 3 (04)
[55]   Towards a nonperturbative construction of the S-matrix [J].
Henning, Brian ;
Murayama, Hitoshi ;
Riva, Francesco ;
Thompson, Jedidiah O. ;
Walters, Matthew T. .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
[56]   QUANTUM COMPUTING WITH NEUTRAL ATOMS [J].
Henriet, Loic ;
Beguin, Lucas ;
Signoles, Adrien ;
Lahaye, Thierry ;
Browaeys, Antoine ;
Reymond, Georges-Olivier ;
Jurczak, Christophe .
QUANTUM, 2020, 4
[57]   Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory? [J].
Hogervorst, Matthijs ;
Rychkov, Slava ;
van Rees, Balt C. .
PHYSICAL REVIEW D, 2015, 91 (02)
[58]   Enhancing quantum field theory simulations on NISQ devices with Hamiltonian truncation [J].
Ingoldby, James ;
Spannowsky, Michael ;
Sypchenko, Timur ;
Williams, Simon .
PHYSICAL REVIEW D, 2024, 110 (09)
[59]   Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods [J].
James, Andrew J. A. ;
Konik, Robert M. ;
Lecheminant, Philippe ;
Robinson, Neil J. ;
Tsvelik, Alexei M. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (04)
[60]   Bounds for the adiabatic approximation with applications to quantum computation [J].
Jansen, Sabine ;
Ruskai, Mary-Beth ;
Seiler, Ruedi .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)