Simulating quantum field theories on near-term quantum devices

被引:0
作者
Williams, Simon [1 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2025年
关键词
Quantum simulation; quantum field theory; theoretical particle physics; LATTICE GAUGE-THEORIES; SCATTERING; COMPUTATION; ALGORITHMS; VACUUM; STATES; ERROR; MODEL;
D O I
10.1142/S0217751X25300108
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Quantum computing offers a paradigm shift in efficiently simulating quantum field theories (QFTs). In this review, we outline two new techniques for the simulation of QFTs on quantum devices. The first technique employs Hamiltonian Truncation (HT) for nonperturbative real-time QFT simulations on Noisy Intermediate-Scale Quantum (NISQ) devices. As a use case, we apply the HT approach to the Schwinger model. For the observables studied, HT avoids complex state preparation, reducing circuit depth and making the algorithm well suited for NISQ devices. Validated on the ibm_brisbane quantum computer with results showing good agreement with numerical simulations, HT presents an efficient alternative to lattice models. The second approach introduces a continuous-variable quantum computing (CVQC) framework for simulating the real-time dynamics of QFTs, where quantum field values are encoded directly into photonic qumodes. By avoiding the overhead of field digitization, CVQC enables scalable simulations using significantly fewer quantum resources than traditional qubit-based approaches. Classical emulation of the qumode lattice successfully reproduces scattering processes in (1+1)-dimensional phi 4 theory. Together, these methods demonstrate viable paths toward near-term quantum simulations of interacting field theories, offering complementary strategies to address challenges in nonperturbative studies in high-energy physics.
引用
收藏
页数:32
相关论文
共 115 条
[1]  
Abel S, 2025, Arxiv, DOI arXiv:2502.01767
[2]   Simulating quantum field theories on continuous-variable quantum computers [J].
Abel, Steven ;
Spannowsky, Michael ;
Williams, Simon .
PHYSICAL REVIEW A, 2024, 110 (01)
[3]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[4]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[5]  
Ale V., arXiv
[6]   Nonperturbative dynamics of (2+1)d φ4-theory from Hamiltonian truncation [J].
Anand, Nikhil ;
Katz, Emanuel ;
Khandker, Zuhair U. ;
Walters, Matthew T. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[7]  
Angelides T, 2024, Arxiv, DOI arXiv:2312.12831
[8]   Classical versus quantum: Comparing tensor-network-based quantum circuits on Large Hadron Collider data [J].
Araz, Jack Y. ;
Spannowsky, Michael .
PHYSICAL REVIEW A, 2022, 106 (06)
[9]   Truncated Hilbert space approach to the 2d φ4 theory [J].
Bajnok, Zoltan ;
Lajer, Marton .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10)
[10]   Software tools for quantum control: improving quantum computer performance through noise and error suppression [J].
Ball, Harrison ;
Biercuk, Michael J. ;
Carvalho, Andre R. R. ;
Chen, Jiayin ;
Hush, Michael ;
De Castro, Leonardo A. ;
Li, Li ;
Liebermann, Per J. ;
Slatyer, Harry J. ;
Edmunds, Claire ;
Frey, Virginia ;
Hempel, Cornelius ;
Milne, Alistair .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)