Hydrothermal Phase Engineering of 1T/2H MoS2/Graphene Nanocomposites for Enhanced Electronic, Catalytic, and Electrochemical Performance

被引:0
作者
Long, Le Ngoc [1 ]
Bich, Tran Thi Ngoc [2 ]
机构
[1] Tra Vinh Univ, Coll Engn & Technol, Sch Chem Engn, 126 Nguyen Thien Thanh St,Ward 5, Tra Vinh City 87100, Vietnam
[2] Tra Vinh Univ, Inst Environm Sci & Technol, 126 Nguyen Thien Thanh St,Ward 5, Tra Vinh City 87100, Vietnam
关键词
1T/2H MoS2 phase engineering; electrochemical energy storage; graphene-based nanocomposites; hydrothermal synthesis of 2D materials; interfacial charge transfer enhancement; TRANSITION-METAL DICHALCOGENIDES; REDUCED GRAPHENE OXIDE; SINGLE-LAYER; RAMAN-SPECTROSCOPY; MOS2; NANOSHEETS; GRAPHITE OXIDE; MOLECULAR LAYERS; HYBRID PHASES; SOLID-STATE; SUPERCAPACITORS;
D O I
10.1002/admt.202500454
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a comprehensive investigation into the phase engineering and interfacial reconstruction of 2D MoS2/graphene nanocomposites synthesized via hydrothermal treatment at 170-250 degrees C. A key innovation lies in the controlled modulation of the 1T/2H-MoS2 phase ratio, wherein low-temperature synthesis enables stabilization of the highly conductive 1T phase, while elevated temperatures promote a transition to the semiconducting 2H phase. Simultaneously, defect-laden graphene oxide is progressively restored to an sp(2)-hybridized network, facilitated by MoS2-mediated electron transfer and sulfur-assisted reduction. Raman spectroscopy reveals a significant I-D/I-G ratio decline (from approximate to 1.28 to approximate to 0.07) and increased lateral crystallite size (approximate to 15.0 to 260.6 nm), indicating enhanced graphitization. XPS and XRD investigation indicates a temperature-induced 1T-to-2H MoS2 phase transition, with Mo 3d (Mo 3d(5/2)/Mo 3d(3/2)) peaks shifting from approximate to 228.4/231.7 eV (1T phase) to approximate to 229.1/232.3 eV (2H phase), along with deoxygenation and reduced surface functionalization. HRTEM visualizes the emergence of coherent 2H-MoS2 nanodomains. Electrochemical analysis reveals a dramatic enhancement in conductivity (approximate to 2.1 x 10(-3) S m(-1)) and capacitance (approximate to 567.6 F cm(-2)), driven by optimized phase composition and interfacial synergy. These findings underscore the pivotal role of synthesis temperature in tailoring mixed-phase architectures and interfacial chemistry, offering a tunable platform for next-generation optoelectronic devices, energy storage, catalysis, and membrane technologies.
引用
收藏
页数:37
相关论文
共 139 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Strain Effect in the Layered MoS2-rGO Heterostructure with Enhanced Performance for Flexible Thermoelectric Applications [J].
Archana, C. ;
Abinaya, Rengarajan ;
Mani, Navaneethan ;
Krishnan, Harish Santhana .
ACS APPLIED ENERGY MATERIALS, 2025, 8 (03) :1589-1597
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Barrett C.S., 1966, Structure of metals
[5]  
crystallographic methods, principles, and data, V3d
[6]   Solution-processed multifunctional graphene and Graphene/MoS2 heterostructure films [J].
Bepete, George ;
Colon, Ambar E. Escobar ;
Ratnayake, Gothamie ;
Dimitrov, Edgar ;
Kammarchedu, Vinay ;
Carreno, Andres Fest ;
Lei, Yu ;
Fujisawa, Kazunori ;
Perea-Lopez, Nestor ;
Voiry, Damien ;
Ebrahimi, Aida ;
Anglaret, Eric ;
Penicaud, Alain ;
Drummond, Carlos ;
Terrones, Mauricio .
CARBON, 2025, 238
[7]   Insights into Multilevel Resistive Switching in Monolayer MoS2 [J].
Bhattacharjee, Shubhadeep ;
Caruso, Enrico ;
McEvoy, Niall ;
Coileain, Cormac O. ;
O'Neill, Katie ;
Ansari, Lida ;
Duesberg, Georg S. ;
Nagle, Roger ;
Cherkaoui, Karim ;
Gity, Farzan ;
Hurley, Paul K. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) :6022-6029
[8]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[9]  
Cai L., 2015, JACS, P137
[10]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196