A machine learning model reveals invisible microscopic variation in acute ischaemic stroke (≤ 6 h) with non-contrast computed tomography

被引:0
作者
Tan, Jiahe [1 ]
Xiao, Mengjun [2 ,3 ]
Wang, Zhipeng [2 ]
Wu, Shuzhen [2 ]
Han, Kun [2 ]
Wang, Haiyan [2 ]
Huang, Yong [4 ]
机构
[1] Univ Calif Davis, Grad Studies, Comp Sci, 1 Shields Ave, Davis, CA 95616 USA
[2] Shandong First Med Univ, Shandong Prov Hosp, Dept Radiol, 324 JingWu Rd, Jinan 250021, Shandong, Peoples R China
[3] Shandong Univ, Childrens Hosp Affiliated, Dept Radiol, Jingshi Rd 23976, Jinan 250022, Shandong, Peoples R China
[4] Shandong First Med Univ, Shandong Canc Hosp & Inst, Shandong Acad Med Sci, Dept Radiol, Jiyan Rd 440, Jinan 250117, Shandong, Peoples R China
关键词
Artificial intelligence; Radiomics; Acute ischaemic stroke; Computed tomography; Machine learning; DIAGNOSIS; MANAGEMENT;
D O I
10.1186/s12880-025-01822-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundIn most medical centers, particularly in primary hospitals, non-contrast computed tomography (NCCT) serves as the primary imaging modality for diagnosing acute ischemic stroke. However, due to the small density difference between the infarct and the surrounding normal brain tissue on NCCT images within the initial 6 h post-onset, it poses significant challenges in promptly and accurately positioning and quantifying the infarct at the early stage.AimsTo investigate whether a radiomics-based model using NCCT could effectively assess the risk of acute ischemic stroke (AIS).MethodsThis study proposed a machine learning (ML) for infarct detection, enabling automated quantitative assessment of AIS lesions on NCCT images. In this retrospective study, NCCT images from 228 patients with AIS (< 6 h from onset) were included, and paired with MRI-diffusion-weighted imaging (DWI) images (attained within 1 to 7 days of onset). NCCT and DWI images were co-registered using the Elastix toolbox. The internal dataset (153 AIS patients) included 179 AIS VOIs and 153 non-AIS VOIs as the training and validation groups. Subsequent cases (75 patients) after 2021 served as the independent test set, comprising 94 AIS VOIs and 75 non-AIS VOIs.ResultsThe random forest (RF) model demonstrated robust diagnostic performance across the training, validation, and independent test sets. The areas under the receiver operating characteristic (ROC) curves were 0.858 (95% CI: 0.808-0.908), 0.829 (95% CI: 0.748-0.910), and 0.789 (95% CI: 0.717-0.860), respectively. Accuracies were 79.399%, 77.778%, and 73.965%, while sensitivities were 81.679%, 77.083%, and 68.085%. Specificities were 76.471%, 78.431%, and 81.333%, respectively.ConclusionNCCT-based radiomics combined with a machine learning model could discriminate between AIS and non-AIS patients within less than 6 h of onset. This approach holds promise for improving early stroke diagnosis and patient outcomes.Clinical trial numberNot applicable.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Decreased white matter integrity in mesial temporal lobe epilepsy: a machine learning approach [J].
An, Jie ;
Fang, Peng ;
Wang, Wensheng ;
Liu, Zhenyin ;
Hu, Dewen ;
Qiu, Shijun .
NEUROREPORT, 2014, 25 (10) :788-794
[3]  
[Anonymous], 2020, WHO Global Health Estimates
[4]   Diagnosis of Dementia by Machine learning methods in Epidemiological studies: a pilot exploratory study from south India [J].
Bhagyashree, S. R. ;
Nagaraj, Kiran ;
Prince, Martin ;
Fall, Caroline H. D. ;
Krishna, Murali .
SOCIAL PSYCHIATRY AND PSYCHIATRIC EPIDEMIOLOGY, 2018, 53 (01) :77-86
[5]   Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison [J].
Chalela, Julio A. ;
Kidwell, Chelsea S. ;
Nentwich, Lauren M. ;
Luby, Marie ;
Butman, John A. ;
Demchuk, Andrew M. ;
Hill, Michael D. ;
Patronas, Nicholas ;
Latour, Lawrence ;
Warach, Steven .
LANCET, 2007, 369 (9558) :293-298
[6]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[7]   Magnesium sulfate in the management of acute ischemic stroke: A review of the literature and future directions [J].
Feygin, Maximillian S. ;
Brenner, Alex ;
Tanweer, Omar .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2025, 34 (02)
[8]   CT and diffusion-weighted MR imaging in randomized order - Diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke [J].
Fiebach, JB ;
Schellinger, PD ;
Jansen, O ;
Meyer, M ;
Wilde, P ;
Bender, J ;
Schramm, P ;
Juttler, E ;
Oehler, J ;
Hartmann, M ;
Hahnel, S ;
Knauth, M ;
Hacke, W ;
Sartor, K .
STROKE, 2002, 33 (09) :2206-2210
[9]   Thrombectomy alone versus intravenous alteplase plus thrombectomy in patients with stroke: an open-label blinded-outcome, randomised non-inferiority trial [J].
Fischer, Urs ;
Kaesmacher, Johannes ;
Strbian, Daniel ;
Eker, Omer ;
Cognard, Christoph ;
Plattner, Patricia S. ;
Butikofer, Lukas ;
Mordasini, Pasquale ;
Deppeler, Sandro ;
Pereira, Vitor M. ;
Albucher, Jean Francois ;
Darcourt, Jean ;
Bourcier, Romain ;
Benoit, Guillon ;
Papagiannaki, Chrysanthi ;
Ozkul-Wermester, Ozlem ;
Sibolt, Gerli ;
Tiainen, Marjaana ;
Gory, Benjamin ;
Richard, Sebastien ;
Liman, Jan ;
Ernst, Marielle Sophie ;
Boulanger, Marion ;
Barbier, Charlotte ;
Mechtouff, Laura ;
Zhang, Liqun ;
Marnat, Gaultier ;
Sibon, Igor ;
Nikoubashman, Omid ;
Reich, Arno ;
Consoli, Arturo ;
Lapergue, Bertrand ;
Ribo, Marc ;
Tomasello, Alejandro ;
Saleme, Suzana ;
Macian, Francisco ;
Moulin, Solne ;
Pagano, Paolo ;
Saliou, Guillaume ;
Carrera, Emmanuel ;
Janot, Kevin ;
Hernandez-Perez, Maria ;
Pop, Raoul ;
Della Schiava, Lucie ;
Luft, Andreas R. ;
Piotin, Michel ;
Gentric, Jean Christophe ;
Pikula, Aleksandra ;
Pfeilschifter, Waltraud ;
Arnold, Marcel .
LANCET, 2022, 400 (10346) :104-115
[10]   Separability of Acute Cerebral Infarction Lesions in CT Based Radiomics: Toward Artificial Intelligence-Assisted Diagnosis [J].
Guan, Yun ;
Wang, Peng ;
Wang, Qi ;
Li, Peihao ;
Zeng, Jianchao ;
Qin, Pinle ;
Meng, Yanfeng .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020