A New Class of Poisson-Inverse Gaussian Liu-type Regression Estimator

被引:0
作者
Alghamdi, Fatimah M. [1 ]
Gemeay, Ahmed M. [2 ]
Abd-Elmougod, Gamal A. [3 ]
El-Raouf, M. M. Abd [4 ]
Habineza, Alexis [5 ]
Hammad, Ali T. [2 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Tanta Univ, Fac Sci, Dept Math, Tanta 31527, Egypt
[3] Islamic Univ Madinah, Fac Sci, Dept Math, Madinah, Saudi Arabia
[4] Arab Acad Sci Technol & Maritime Transport AASTMT, Basic & Appl Sci Inst, Alexandria, Egypt
[5] Kibogora Polytech Univ, Dept Sci, Nyamasheke, Rwanda
关键词
Poisson-Inverse Gaussian regression model; Liu estimator; Liu-type estimator; Maximum likelihood estimator; Mean squared error; Multicollinearity; Ridge estimator; RIDGE-REGRESSION; MODEL;
D O I
10.1007/s44198-025-00303-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regression models are essential for understanding the relationship between dependent and independent variables. However, multicollinearity poses a significant challenge, leading to unstable and inefficient parameter estimates and inflated variance. The Poisson-Inverse Gaussian regression model (P-IGRM), a mixture of the Poisson and Inverse Gaussian distributions, is widely used to address overdispersion in count data. Although the maximum likelihood (ML) estimator is commonly used for parameter estimation in P-IGRM, it performs poorly in the presence of multicollinearity. To overcome this issue, several biased estimators, such as ridge, Liu, and Liu-type estimators, have been proposed. In this paper, we introduce a new class of Poisson-Inverse Gaussian Liu-type regression estimators as an alternative to existing methods. We compare the proposed estimator with ML, ridge, Liu, and Liu-type estimators using scalar mean square error (MSE) and matrix mean square error (MMSE) criteria. Monte Carlo simulations are conducted to evaluate the performance of the proposed estimator under different conditions. Additionally, we illustrate the effectiveness of all considered estimators using real data analysis.
引用
收藏
页数:31
相关论文
共 45 条
[1]   Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model [J].
Abdelwahab, Mahmoud M. ;
Abonazel, Mohamed R. ;
Hammad, Ali T. ;
El-Masry, Amera M. .
AXIOMS, 2024, 13 (01)
[2]   A new improved Liu-type estimator for Poisson regression models [J].
Akay, Kadri Ulas ;
Ertan, Esra .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05) :1484-1503
[3]  
Akdeniz F., 2001, INDIAN J STAT, V63, P321, DOI DOI 10.2307/25053183
[4]   A New Conway Maxwell-Poisson Liu Regression Estimator-Method and Application [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Sami, Faiza ;
Mastor, Adam Braima ;
Egeh, Omer Mohamed ;
Muse, Abdisalam Hassan .
JOURNAL OF MATHEMATICS, 2022, 2022
[5]   A new Liu-type estimator for the Inverse Gaussian Regression Model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Qasim, Muhammad .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) :1153-1172
[6]  
Alheety MI., 2009, SURVEYS MATH ITS APP, V4, P155
[7]  
Alin A., 2010, Multicollinearity, V2, P370
[8]  
Alrweili H., 2024, Stat. Optim. Inf. Comput, V12, P982
[9]   On the estimation of Bell regression model using ridge estimator [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Majid, Abdul .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) :854-867
[10]   New ridge parameter estimators for the zero-inflated Conway Maxwell Poisson ridge regression model [J].
Ashraf, Bushra ;
Amin, Muhammad ;
Akram, Muhammad Nauman .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (08) :1814-1840