Missing data imputation of climate time series: A review

被引:0
作者
Alejo-Sanchez, Lizette Elena [1 ]
Marquez-Grajales, Aldo [1 ]
Salas-Martinez, Fernando [2 ]
Franco-Arcega, Anilu [1 ]
Lopez-Morales, Virgilio [1 ]
Acevedo-Sandoval, Otilio Arturo [2 ]
Gonzalez-Ramirez, Cesar Abelardo [2 ]
Villegas-Vega, Ramiro [3 ]
机构
[1] Univ Autonoma Estado Hidalgo, Area Academ Comp & Elect, Inst Ciencias Bds Ingn, Carr Pachuca-Tulancingo km 4-5, Mineral De La Reforma 42184, Hidalgo, Mexico
[2] Univ Autonoma Estado Hidalgo, Area Academ Quim, Inst Ciencias Bas & Ingn, Carr Pachuca-Tulancingo km 4-5, Mineral De La Reforma 42184, Hidalgo, Mexico
[3] Univ Veracruz, Artificial Intelligence Res Inst, Campus Paseo Lote 2,Secc Segunda 112, Nuevo Xalapa 91097, Veracruz, Mexico
关键词
Climate time series; Missing data; Imputation; Machine learning; Deep learning; RAINFALL; INTERPOLATION;
D O I
10.1016/j.mex.2025.103455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing data in climate time series is a significant problem because it complicates the monitoring and prediction of climatic phenomena. The primary objective of this research document is to describe the most relevant imputation methods for missing data in the climate context over the last decade. Results reveal a superior concentration of documents on the use of imputation methods for climate time series in Asia and Europe, with notable examples from Malaysia, China, and Italy. Meanwhile, Brazil and Australia were the countries with a high number of research in America and Oceania. Moreover, temperature and precipitation were the most frequently employed climate variables. Regarding the information source, the monitoring networks were the most commonly used source for extracting data in almost all the research. On the other hand, methods such as mean techniques, simple and multiple linear regression, interpolation, and Principal Component Analysis (PCA) were the conventional statistical techniques used for imputing missing data. Furthermore, artificial neural networks demonstrated the ability to identify complex patterns in the data. Finally, Generative Adversarial Networks excel over other deep learning methods in the imputation of missing climate data.
引用
收藏
页数:19
相关论文
共 87 条
[1]  
Abdillah Wahyu, 2023, 2023 International Conference on Computer, Control, Informatics and its Applications (IC3INA), P313, DOI 10.1109/IC3INA60834.2023.10285764
[2]   Evaluation of imputation techniques for infilling missing daily rainfall records on river basins in Ghana [J].
Addi, Martin ;
Gyasi-Agyei, Yeboah ;
Obuobie, Emmanuel ;
Amekudzi, Leonard Kofitse .
HYDROLOGICAL SCIENCES JOURNAL, 2022, 67 (04) :613-627
[3]   Identify the most appropriate imputation method for handling missing values in clinical structured datasets: a systematic review [J].
Afkanpour, Marziyeh ;
Hosseinzadeh, Elham ;
Tabesh, Hamed .
BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
[4]   Missing data imputation of high-resolution temporal climate time series data [J].
Afrifa-Yamoah, E. ;
Mueller, U. A. ;
Taylor, S. M. ;
Fisher, A. J. .
METEOROLOGICAL APPLICATIONS, 2020, 27 (01)
[5]   A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria [J].
Aieb, Amir ;
Madani, Khodir ;
Scarpa, Marco ;
Bonaccorso, Brunella ;
Lefsih, Khalef .
HELIYON, 2019, 5 (02)
[6]   Dealing with missing values in large-scale studies: microarray data imputation and beyond [J].
Aittokallio, Tero .
BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) :253-264
[7]   Systematic Review of Using Machine Learning in Imputing Missing Values [J].
Alabadla, Mustafa ;
Sidi, Fatimah ;
Ishak, Iskandar ;
Ibrahim, Hamidah ;
Affendey, Lilly Suriani ;
Ani, Zafienas Che ;
Jabar, Marzanah A. ;
Bukar, Umar Ali ;
Devaraj, Navin Kumar ;
Muda, Ahmad Sobri ;
Tharek, Anas ;
Omar, Noritah ;
Jaya, M. Izham Mohd .
IEEE ACCESS, 2022, 10 :44483-44502
[8]  
[Anonymous], 2025, WMOGuide to Instruments and MEthods of Observation Volumen I-Measurement of MEteorological Variables
[9]  
[Anonymous], 2015, UN FRAMEWORK CONVENT
[10]  
Azman A.H., 2021, IOP Conference Series: Materials Science and Engineering, V1144