Reducing Lax pairs to obtain integrable matrix modified Korteweg-de Vries models

被引:0
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
PRAMANA-JOURNAL OF PHYSICS | 2025年 / 99卷 / 03期
基金
中国国家自然科学基金;
关键词
Lax pair; Ablowitz-Kaup-Newell-Segur matrix spectral problem; zero-curvature equation; similarity transformation; 02.30.Ik; 05.45.Yv; INVERSE SCATTERING TRANSFORM; SOLITON-SOLUTIONS; EQUATIONS; DYNAMICS; DARK;
D O I
10.1007/s12043-025-02968-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper explores the matrix modified Korteweg-de Vries (mKdV) integrable models using similarity transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity transformations to reduce the Lax pairs of the Ablowitz-Kaup-Newell-Segur matrix spectral problems, thereby deriving integrable matrix mKdV models. Four illustrative scenarios are discussed to present specific examples of these reduced integrable models.
引用
收藏
页数:7
相关论文
共 49 条
[11]   Application of tetragonal curves to coupled Boussinesq equations [J].
Geng, Xianguo ;
Jia, Minxin ;
Xue, Bo ;
Zhai, Yunyun .
LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)
[12]   Algebro-geometric quasi-periodic solutions to the Satsuma-Hirota hierarchy [J].
Geng, Xianguo ;
Zeng, Xin .
PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
[13]   Nonlocal modified KdV equations and their soliton solutions by Hirota Method [J].
Gurses, Metin ;
Pekcan, Asli .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 :427-448
[14]   Nonlocal nonlinear Schrodinger equations and their soliton solutions [J].
Gurses, Metin ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[15]   On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :699-708
[16]   Construction of complexiton-type solutions using bilinear form of Hirota-type [J].
Kaplan, Melike ;
Raza, Nauman .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (01) :349-357
[17]   An effective computational approach and sensitivity analysis to pseudo-parabolic-type equations [J].
Kaplan, Melike ;
Butt, Asma Rashid ;
Thabet, Hayman ;
Akbulut, Arzu ;
Raza, Nauman ;
Kumar, Dipankar .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, :4172-4186
[19]   Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem [J].
Liu, Tongshuai ;
Xia, Tiecheng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
[20]   Lump Solution, Breather Soliton and More Soliton Solutions for a (2+1)-Dimensional Generalized Benjamin-Ono Equation [J].
Ma, Hongcai ;
Yue, Shupan ;
Gao, Yidan ;
Deng, Aiping .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)