Reducing Lax pairs to obtain integrable matrix modified Korteweg-de Vries models

被引:0
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
PRAMANA-JOURNAL OF PHYSICS | 2025年 / 99卷 / 03期
基金
中国国家自然科学基金;
关键词
Lax pair; Ablowitz-Kaup-Newell-Segur matrix spectral problem; zero-curvature equation; similarity transformation; 02.30.Ik; 05.45.Yv; INVERSE SCATTERING TRANSFORM; SOLITON-SOLUTIONS; EQUATIONS; DYNAMICS; DARK;
D O I
10.1007/s12043-025-02968-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper explores the matrix modified Korteweg-de Vries (mKdV) integrable models using similarity transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity transformations to reduce the Lax pairs of the Ablowitz-Kaup-Newell-Segur matrix spectral problems, thereby deriving integrable matrix mKdV models. Four illustrative scenarios are discussed to present specific examples of these reduced integrable models.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]  
Ablowitz MJ, 1981, SOLITONS INVERSE SCA
[5]   Characterization of rational solutions of a KdV-like equation [J].
Campos, Brian D. Vasquez .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 :396-416
[6]   An extended (2+1)-dimensional modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation: Lax pair and Darboux transformation [J].
Cheng, Li ;
Zhang, Yi ;
Ma, Wen-Xiu .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (03)
[7]   Integrability and multiple-rogue and multi-soliton wave solutions of the (3+1)-dimensional Hirota-Satsuma-Ito equation [J].
Chu, Jingyi ;
Liu, Yaqing ;
Ma, Wen-Xiu .
MODERN PHYSICS LETTERS B, 2025, 39 (21)
[8]  
DAS A, 1989, INTEGRABLE MODELS
[9]  
Drazin PG., 1983, Solitons: An Introduction
[10]   Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation [J].
Gao, Di ;
Ma, Wen-Xiu ;
Lu, Xing .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (09) :887-895