Solvent-free mechanochemical preparation of Fe-N-C loaded MnO2 to efficiently activate peroxymonosulfate for norfloxacin degradation

被引:0
作者
Zhang, Yifan [1 ]
Ndayiragije, Sylvestre [1 ,2 ]
Chen, Ming [1 ]
Wang, Xiaobo [3 ]
Zhu, Lihua [1 ]
Wang, Nan [1 ]
机构
[1] Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan
[2] CRSNE, Faculté des Sciences, Universié du Burundi, Bujumbura
[3] College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan
基金
中国国家自然科学基金;
关键词
Ball milling; Fe-N-C; MnO[!sub]2[!/sub; Norfloxacin; Peroxymonosulfate;
D O I
10.1016/j.cej.2025.165973
中图分类号
学科分类号
摘要
Fe- and nitrogen-doped carbonaceous (Fe-N-C) sites supported on MnO2 (Fe-N-C@MnO2) were prepared by a solvent-free mechanochemical method for peroxymonosulfate (PMS) activation to degrade norfloxacin (NFX). After a 50-min ball milling of iron(II) phthalocyanine (Fe(II)Pc) and MnO2 at a weight ratio of 7.5 %, the obtained Fe-N-C@MnO2 exhibited exceptional activity in PMS activation, achieving nearly complete degradation of NFX in 5 min with a rate constant of 0.62 min−1. This rate constant was 11.5 and 28.2 times higher than that for milled MnO2 (bm-MnO2) and the mixture of Fe(II)Pc and MnO2, respectively. Alternative iron sources (FeSO4, FeCl2, Fe(III)-EDTA) and phthalocyanine showed no enhancement. Characterization revealed Fe-N-C@MnO2 possessed abundant Mn3+, oxygen vacancies and Fe-N-C sites. Combined experimental and computational studies demonstrated Fe-N-C@MnO2 simultaneously enhanced the 1O2 generation and facilitated the formation of SO4•−, •OH and O2•−, with contributions to NFX degradation following: 1O2 > •OH ≈ O2•− > SO4•−. This work establishes mechanochemical coordination engineering as a facile strategy for constructing high-performance metal-N-C hybrid catalysts. © 2025
引用
收藏
相关论文
共 57 条
[1]  
Guo H., Gao N., Yang Y., Zhang Y., Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate, Chem. Eng. J., 292, pp. 82-91, (2016)
[2]  
Su R., Huang L., Li N., Li L., Jin B., Zhou W., Gao B., Yue Q., Li Q., Chlorine dioxide radicals triggered by chlorite under visible-light irradiation for enhanced degradation and detoxification of norfloxacin antibiotic: radical mechanism and toxicity evaluation, Chem. Eng. J., 414, (2021)
[3]  
Cai P., Zhao J., Zhang X., Zhang T., Yin G., Chen S., Dong C., Huang Y., Sun Y., Yang D., Xing B., Synergy between cobalt and nickel on NiCo<sub>2</sub>O<sub>4</sub> nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation, Appl. Catal. B-Environ., 306, (2022)
[4]  
Song W., Yu Z., Li H., Ji Y., Cao L., Ren L., Li X., Li Y., Xu X., Yan L., Insights into the factors influencing the oxidation of antibiotic pollutants in nitrogen-doped biochar/PMS system: the roles of physicochemical properties and reaction pathways, Chem. Eng. J., 498, (2024)
[5]  
Ma H., Zhang Y., Zhu L., Majima T., Wang N., Efficient activation of peroxymonosulfate on cobalt hydroxychloride nanoplates through hydrogen bond for degradation of tetrabromobisphenol A, Chem. Eng. J., 413, (2021)
[6]  
Khan S., He X., Khan J., Khan H.M., Boccelli D.L., Dionysiou D.D., Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system, Chem. Eng. J., 318, pp. 135-142, (2017)
[7]  
Wang G., Zhao D., Kou F., Ouyang Q., Chen J., Fang Z., Removal of norfloxacin by surface Fenton system (MnFe<sub>2</sub>O<sub>4</sub>/H<sub>2</sub>O<sub>2</sub>): kinetics, mechanism and degradation pathway, Chem. Eng. J., 351, pp. 747-755, (2018)
[8]  
Hui C., Zhong Z., Hou L., Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBS-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater., 283, pp. 70-79, (2015)
[9]  
Wang S., Wu J., Lu X., Xu W., Gong Q., Ding J., Dan B., Xie P., Removal of acetaminophen in the Fe<sup>2+</sup>/persulfate system: kinetic model and degradation pathways, Chem. Eng. J., 358, pp. 1091-1100, (2019)
[10]  
Chen Z., Li J., Chen M., Koh K., Du Z., Gin K., He Y., Ong C., Chen J., Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators, Water Res., 201, (2021)