Global strong solution for the two-dimensional magnetohydrodynamics equations with shearing-periodic boundary conditions

被引:0
作者
Kondo, Shintaro [1 ]
Nakamura, Tatsuki [2 ]
机构
[1] Gifu Univ, Elect & Comp Engn, 1-1 Yanagido, Gifu 5011193, Japan
[2] AISIN Corp, Kariya, Aichi, Japan
基金
日本学术振兴会;
关键词
MHD equations; shear flows; strong solution; NAVIER-STOKES EQUATIONS; PARABOLIC EQUATIONS; CLASSICAL-SOLUTIONS; EXISTENCE; SYSTEM;
D O I
10.1002/mana.70012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the two-dimensional (2D), two-field magnetohydrodynamics (MHD) equations in the presence of a shear flow, assuming positive plasma viscosity and resistivity. We establish the global-in-time existence and uniqueness of a strong solution for the 2D two-field MHD equations under shearing-periodic boundary conditions, as proposed by Hawley et al. Moreover, we establish the existence and uniqueness of a strong solution for the linear advection-diffusion equation under shearing-periodic boundary condition by employing uniformly local L2$L<^>2$ spaces.
引用
收藏
页数:28
相关论文
共 43 条
[1]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems
[2]  
[Anonymous], 1975, Sobolev Spaces
[3]  
[Anonymous], 1983, Analyse fonctionnelle. Theorie et applications
[4]   Dissipative parabolic equations in locally uniform spaces [J].
Arrieta, J. M. ;
Cholewa, J. W. ;
Dlotko, Tornasz ;
Rodriguez-Bernal, A. .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (15) :1643-1663
[5]   Linear parabolic equations in locally uniform spaces [J].
Arrieta, JM ;
Rodriguez-Bernal, A ;
Cholewa, JW ;
Dlotko, T .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (02) :253-293
[6]   SUPPRESSION OF BLOW-UP IN PATLAK-KELLER-SEGEL VIA SHEAR FLOWS [J].
Bedrossian, Jacob ;
He, Siming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (06) :4722-4766
[7]   Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows [J].
Bedrossian, Jacob ;
Zelati, Michele Coti .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :1161-1204
[8]  
Casella E, 2002, REND SEMIN MAT U PAD, V108, P79
[9]   Global Classical Solutions for MHD System [J].
Casella, Emanuela ;
Secchi, Paolo ;
Trebeschi, Paola .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (01) :70-91
[10]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241