New Fixed Point Theorems for θ -Φ- Contraction on Quasi-Metric Spaces

被引:0
作者
Kari, Abdelkarim [1 ]
Zoto, Kastriot [2 ]
Selko, Zamir [3 ]
机构
[1] Hassan II Univ, Lab Anal Modeling & Simulat, Fac Sci Ben Msik, BP 7955, Casablanca, Morocco
[2] Univ Gjirokastra, Fac Nat Sci, Dept Math Informat & Phys, Gjirokastra 6001, Albania
[3] Univ Elbasan Aleksander XHUVANI, Fac Nat Sci, Dept Math, Elbasan 3001, Albania
关键词
fixed point; quasi-metric spaces; theta-Phi-; Contraction;
D O I
10.28924/2291-8639-23-2025-156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the concept of 6-contraction and 6 - -contraction in a generalized setting such as quasi-metric spaces with the aim to study existence of the unique fixed point for self mapping. Our established theorems extend and elaborate classical conclusions of standart metric supported by many examples and corollaries as a further completion of the results in the current literature.
引用
收藏
页数:22
相关论文
共 14 条
[1]  
Banach S., 1922, Fundam Math, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[2]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[3]   An asymmetric Arzela-Ascoli theorem [J].
Collins, Julia ;
Zimmer, Johannes .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (11) :2312-2322
[4]   Further generalizations of the Banach contraction principle [J].
Jleli, Mohamed ;
Karapinar, Erdal ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, :1-9
[5]   SOME RESULTS ON FIXED POINTS .2. [J].
KANNAN, R .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (04) :405-&
[6]   On generalizations of the Ekeland-type variational principles [J].
Park, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (07) :881-889
[7]   SOME REMARKS CONCERNING CONTRACTION MAPPINGS [J].
REICH, S .
CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (01) :121-&
[8]   A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem [J].
Romaguera, Salvador ;
Tirado, Pedro .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[9]  
Saffaj H., 2017, Adv. Fixed Point Theory, V7, P44
[10]  
Saffaj H, 2017, BULL MATH ANAL APPL, V9, P92