Predicting the prognosis of radical gastrectomy for patients with locally advanced gastric cancer after neoadjuvant chemotherapy using machine learning technology: a multicenter study in China

被引:0
作者
Huang, Ze-Ning [1 ,2 ,3 ,4 ]
He, Qi-Chen [1 ,2 ,3 ,4 ]
Sun, Yu-Qin [5 ]
Ma, Yu-Bin [6 ]
Qiu, Wen-Wu [1 ,2 ,3 ,4 ]
He, Ji-Xun [1 ,2 ,3 ,4 ]
Zheng, Chao-Hui [1 ,2 ,3 ,4 ]
Li, Ping [1 ,2 ,3 ,4 ]
Wang, Jia-Bin [1 ,2 ,3 ,4 ]
Chen, Qi-Yue [1 ,2 ,3 ,4 ]
Cao, Long-Long [1 ,2 ,3 ,4 ]
Lin, Mi [1 ,2 ,3 ,4 ]
Tu, Ru-Hong [1 ,2 ,3 ,4 ]
Huang, Chang-Ming [1 ,2 ,3 ,4 ]
Lin, Jian-Xian [1 ,2 ,3 ,4 ]
Xie, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Fujian Med Univ, Union Hosp, Dept Gastr Surg, 29 Xinquan Rd, Fuzhou 350001, Fujian, Peoples R China
[2] Fujian Med Univ, Union Hosp, Dept Gen Surg, Fuzhou, Peoples R China
[3] Fujian Med Univ, Key Lab Gastrointestinal Canc, Minist Educ, Fuzhou, Peoples R China
[4] Fujian Med Univ, Dept Med Microbiol, Fujian Key Lab Tumor Microbiol, Fuzhou, Peoples R China
[5] Fujian Med Univ, Zhangzhou Affiliated Hosp, Dept Gastrointestinal Surg, Zhangzhou, Peoples R China
[6] Qinghai Univ, Dept Gastrointestinal Surg, Affiliated Hosp, Xining, Peoples R China
来源
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES | 2025年 / 39卷 / 08期
关键词
Gastric cancer; Gastrectomy; Machine learning; Neoadjuvant chemotherapy; HELICOBACTER-PYLORI INFECTION; COX REGRESSION-MODEL; PERIOPERATIVE CHEMOTHERAPY; CLINICAL-SIGNIFICANCE; 1ST-LINE TREATMENT; PHASE-II; SURVIVAL; ADENOCARCINOMA; S-1; OXALIPLATIN;
D O I
10.1007/s00464-025-11946-4
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundNeoadjuvant chemotherapy (NAC) can improve the prognosis of patients with locally advanced gastric cancer (LAGC). However, precise models for accurate prognostic predictions are lacking. We aimed to utilize Cox regression and integrate various machine learning (ML) algorithms to identify and prioritize key factors influencing LAGC overall survival to establish an efficient prognostic prediction model.MethodsData from 385 patients with LAGC who underwent NAC followed by radical gastrectomy at two centers between January 2016 and December 2020 were analyzed (internal training set, n = 167; internal validation set, n = 112; external validation set, n = 106). The internal cohort was randomly divided into training and validation sets in a 6:4 ratio.ResultsThe support vector machine (SVM) model was identified as the best predictive model (AUC values: internal training set, 0.93; internal validation set, 0.74; external validation set, 0.74), outperforming the ypTNM staging system (AUC values: internal training set, 0.9330 vs. 0.7170; internal validation set, 0.7440 vs. 0.6700; external validation set, 0.7403 vs. 0.6960, respectively). In the internal cohort, patients in the HRG (High Risk Group) had significantly lower mean overall survival compared with patients in the LRG (Low Risk Group) (47.33 vs. 64.97 months, respectively; log-rank P = 0.006) and a higher recurrence rate (48.0% vs. 35.6%, respectively; P = 0.041).ConclusionsThe SVM model predicted postoperative survival and recurrence patterns in patients with LAGC post-NAC, and can address the limitations of the ypTNM staging system through providing more targeted decision-making for individualized treatment.
引用
收藏
页码:5152 / 5170
页数:19
相关论文
共 65 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   Clinical significance of circulating tumor cells in blood from patients with gastric cancer [J].
Arigami, Takaaki ;
Uenosono, Yoshikazu ;
Yanagita, Shigehiro ;
Okubo, Keishi ;
Kijima, Takashi ;
Matsushita, Daisuke ;
Amatatsu, Masahiko ;
Kurahara, Hiroshi ;
Maemura, Kosei ;
Natsugoe, Shoji .
ANNALS OF GASTROENTEROLOGICAL SURGERY, 2017, 1 (01) :60-68
[3]   Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy [J].
Becker, K ;
Mueller, JD ;
Schulmacher, C ;
Ott, K ;
Fink, U ;
Busch, R ;
Böttcher, K ;
Siewert, JR ;
Höfler, H .
CANCER, 2003, 98 (07) :1521-1530
[4]  
Bezjak Miran, 2023, Ann Transl Med, V11, P345, DOI 10.21037/atm-22-6469
[5]   A Novel Clinical Prediction Model for Prognosis in Malignant Pleural Mesothelioma Using Decision Tree Analysis [J].
Brims, Fraser J. H. ;
Meniawy, Tarek M. ;
Duffus, Ian ;
de Fonseka, Duneesha ;
Segal, Amanda ;
Creaney, Jenette ;
Maskell, Nicholas ;
Lake, Richard A. ;
de Klerk, Nick ;
Nowak, Anna K. .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (04) :573-582
[6]   CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients [J].
Cao, Ying ;
Zhu, Hongyu ;
Li, Zhenkai ;
Liu, Canyu ;
Ye, Juan .
ACADEMIC RADIOLOGY, 2024, 31 (09) :3678-3687
[7]   Locoregional relapse after gastrectomy with D2 lymphadenectomy for gastric cancer [J].
Chang, J. S. ;
Kim, K. H. ;
Yoon, H. I. ;
Hyung, W. J. ;
Rha, S. Y. ;
Kim, H. S. ;
Lee, Y. C. ;
Lim, J. S. ;
Noh, S. H. ;
Koom, W. S. .
BRITISH JOURNAL OF SURGERY, 2017, 104 (07) :877-884
[8]   The promise of machine learning in predicting treatment outcomes in psychiatry [J].
Chekroud, Adam M. ;
Bondar, Julia ;
Delgadillo, Jaime ;
Doherty, Gavin ;
Wasil, Akash ;
Fokkema, Marjolein ;
Cohen, Zachary ;
Belgrave, Danielle ;
DeRubeis, Robert ;
Iniesta, Raquel ;
Dwyer, Dominic ;
Choi, Karmel .
WORLD PSYCHIATRY, 2021, 20 (02) :154-170
[9]   Nomogram for Predicting Survival in Advanced Gastric Cancer after Neoadjuvant Chemotherapy and Radical Surgery [J].
Chen, Yonghe ;
Liu, Dan ;
Xiao, Jian ;
Xiang, Jun ;
Liu, Aihong ;
Chen, Shi ;
Liu, Junjie ;
Hu, Xiansheng ;
Peng, Junsheng .
GASTROENTEROLOGY RESEARCH AND PRACTICE, 2021, 2021
[10]   Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis [J].
Cheong, Jae-Ho ;
Yang, Han-Kwang ;
Kim, Hyunki ;
Kim, Woo Ho ;
Kim, Young-Woo ;
Kook, Myeong-Cherl ;
Park, Young-Kyu ;
Kim, Hyung-Ho ;
Lee, Hye Seung ;
Lee, Kyung Hee ;
Gu, Mi Jin ;
Kim, Ha Yan ;
Lee, Jinae ;
Choi, Seung Ho ;
Hong, Soonwon ;
Kim, Jong Won ;
Choi, Yoon Young ;
Hyung, Woo Jin ;
Jang, Eunji ;
Kim, Hyeseon ;
Huh, Yong-Min ;
Noh, Sung Hoon .
LANCET ONCOLOGY, 2018, 19 (05) :629-638