Predicting ICU Admissions using Interpretable Machine Learning

被引:0
作者
Elbatanouny, Hagar [1 ]
Tawfik, Hissam [1 ]
Khater, Tarek [2 ]
Turky, Ayad [3 ]
Hussain, Abir [1 ]
机构
[1] Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates
[2] Khalifa Univ, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[3] Univ Sharjah, Dept Comp Sci, Sharjah, U Arab Emirates
来源
2024 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT | 2024年
关键词
Machine Learning; Interpretable Machine Learning; Intensive Care Unit (ICU); Pandemics; SHAP; SEPSIS;
D O I
10.1109/BDCAT63179.2024.00023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early prediction of patients in need of admission to the intensive care unit (ICU) is essential for maximizing the use of available hospital resources and enhancing the quality of patient care outcomes. This work uses the Covid19MPD Dataset to predict ICU admissions based on various machine learning techniques such as Random Forest, Support Vector Machine, Gradient Boosting, and Multi-Layer Perceptron along-side Explainable Artificial Intelligence (XAI) approaches. Our findings show that the Gradient Boosting model achieved the best accuracy at 97.49% and an F1 score of 71% for ICU admissions. Notably, the study finds that age and pneumonia are important predictors, with patients 45 years and older who come with COVID-19 and pneumonia having a much higher chance of needing ICU care. These findings highlight how important it is to use machine learning models in clinical settings in order to improve ICU admission prediction and facilitate prompt medical intervention.
引用
收藏
页码:80 / 84
页数:5
相关论文
共 28 条
[1]  
Campos David., 2012, Theory Appl Adv Text Min, DOI DOI 10.5772/51066
[2]  
Che Zhengping, 2016, AMIA Annu Symp Proc, V2016, P371
[3]   Predicting ICU admission and death in the Emergency Department: A comparison of six early warning scores [J].
Covino, Marcello ;
Sandroni, Claudio ;
Della Polla, Davide ;
De Matteis, Giuseppe ;
Piccioni, Andrea ;
De Vita, Antonio ;
Russo, Andrea ;
Salini, Sara ;
Carbone, Luigi ;
Petrucci, Martina ;
Pennisi, Mariano ;
Gasbarrini, Antonio ;
Franceschi, Francesco .
RESUSCITATION, 2023, 190
[4]  
Das A., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2006.11371
[5]   Post-coordination in practice: Evaluating compositional terminological system-based registration of ICU reasons for admission [J].
de Keizer, Nicolette F. ;
Bakhshi-Raiez, Ferishta ;
de Jonge, Evert ;
Cornet, Ronald .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2008, 77 (12) :828-835
[6]   Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences [J].
Gardner, MW ;
Dorling, SR .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (14-15) :2627-2636
[7]  
Gerlings Julie., 2022, Practicalities and Prospects, P169
[8]  
Gianfagna Leonida., 2021, EXPLAINABLE PYTHON, DOI DOI 10.1007/978-3-030-68640-6
[9]   Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit [J].
Hooper, Michael H. ;
Weavind, Lisa ;
Wheeler, Arthur P. ;
Martin, Jason B. ;
Gowda, Supriya Srinivasa ;
Semler, Matthew W. ;
Hayes, Rachel M. ;
Albert, Daniel W. ;
Deane, Norment B. ;
Nian, Hui ;
Mathe, Janos L. ;
Nadas, Andras ;
Sztipanovits, Janos ;
Miller, Anne ;
Bernard, Gordon R. ;
Rice, Todd W. .
CRITICAL CARE MEDICINE, 2012, 40 (07) :2096-2101
[10]  
kaggle, 2019, Covid-19 mexico patient health dataset