A Deep Learning Based Method for Low Dose Lung CT Noise Reduction

被引:1
作者
Ma, Yinjin [1 ,2 ]
Feng, Peng [1 ]
He, Peng [1 ]
Long, Zourong [1 ]
Wei, Biao [1 ]
机构
[1] Chongqing Univ, Coll Optoelect Engn, Chongqing 400044, Peoples R China
[2] Tongren Univ, Sch Data Sci, Tongren 554300, Guizhou, Peoples R China
来源
PROCEEDINGS OF 2019 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL I | 2020年 / 592卷
基金
中国国家自然科学基金;
关键词
Low dose CT; Convolutional neural network; Residual learning; Noise reduction; X-RAY; RECONSTRUCTION;
D O I
10.1007/978-981-32-9682-4_68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method based on convolutional neural network auto encoder-decoder for low dose lung CT image noise reduction is presented. This method integrated convolutional neural network, auto encoder-decoder, residual learning, parametric rectified linear unit (PReLU). Particularly, the term of structural similarity index (SSIM) added to the loss function. After training patch by patch, the model attains a promising performance compared to state of the art traditional and deep learning methods in visual effects and quantitative measurements.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 12 条
[1]   Ray Contribution Masks for Structure Adaptive Sinogram Filtering [J].
Balda, Michael ;
Hornegger, Joachim ;
Heismann, Bjoern .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (06) :1228-1239
[2]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[3]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Image Denoising of Low-radiation Dose Coronary CT Angiography by an Adaptive Block-Matching 3D Algorithm [J].
Kang, Dongwoo ;
Slomka, Piotr ;
Nakazato, Ryo ;
Woo, Jonghye ;
Berman, Daniel S. ;
Kuo, C. -C. Jay ;
Dey, Damini .
MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
[6]   A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction [J].
Kang, Eunhee ;
Min, Junhong ;
Ye, Jong Chul .
MEDICAL PHYSICS, 2017, 44 (10) :e360-e375
[7]   Adaptive nonlocal means filtering based on local noise level for CT denoising [J].
Li, Zhoubo ;
Yu, Lifeng ;
Trzasko, Joshua D. ;
Lake, David S. ;
Blezek, Daniel J. ;
Fletcher, Joel G. ;
McCollough, Cynthia H. ;
Manduca, Armando .
MEDICAL PHYSICS, 2014, 41 (01)
[8]   DIAGNOSTIC-X-RAY AND ULTRASOUND EXPOSURE AND RISK OF CHILDHOOD-CANCER [J].
SHU, XO ;
JIN, F ;
LINET, MS ;
ZHENG, W ;
CLEMENS, J ;
MILLS, J ;
GAO, YT .
BRITISH JOURNAL OF CANCER, 1994, 70 (03) :531-536
[9]   Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization [J].
Sidky, Emil Y. ;
Pan, Xiaochuan .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (17) :4777-4807
[10]   An outlook on x-ray CT research and development [J].
Wang, Ge ;
Yu, Hengyong ;
De Man, Bruno .
MEDICAL PHYSICS, 2008, 35 (03) :1051-1064