CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection

被引:149
作者
Dong, Zhiwei [1 ,2 ]
Li, Guoxuan [3 ]
Liao, Yue [4 ]
Wang, Fei [2 ]
Ren, Pengju [1 ]
Qian, Chen [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R China
[2] SenseTime Res, Hong Kong, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Beihang Univ, Beijing, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.01053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keypoint-based detectors have achieved pretty-well performance. However, incorrect keypoint matching is still widespread and greatly affects the performance of the detector. In this paper, we propose CentripetalNet which uses centripetal shift to pair corner keypoints from the same instance. CentripetalNet predicts the position and the centripetal shift of the corner points and matches corners whose shifted results are aligned. Combining position information, our approach matches corner points more accurately than the conventional embedding approaches do. Corner pooling extracts information inside the bounding boxes onto the border. To make this information more aware at the corners, we design a cross-star deformable convolution network to conduct feature adaption. Furthermore, we explore instance segmentation on anchor-free detectors by equipping our CentripetalNet with a mask prediction module. On MS-COCO test-dev, our CentripetalNet not only outperforms all existing anchor-free detectors with an AP of 48.0% but also achieves comparable performance to the state-of-the-art instance segmentation approaches with a 40.2% MaskAP. Code is available at https://github.com/KiveeDong/CentripetalNet.
引用
收藏
页码:10516 / 10525
页数:10
相关论文
共 42 条
[1]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00308
[2]  
[Anonymous], CVPR
[3]  
[Anonymous], 2018, CVPR
[4]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[5]   MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features [J].
Chen, Liang-Chieh ;
Hermans, Alexander ;
Papandreou, George ;
Schroff, Florian ;
Wang, Peng ;
Adam, Hartwig .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4013-4022
[6]  
Chen Yuntao, 2019, ARXIV COMPUTER VISIO
[7]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[8]  
Duan K, 2019, ARXIV
[9]  
Fu Chengyang, 2019, ARXIV COMPUTER VISIO
[10]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448