Type-I Superconductors as the London Penetration Depth Goes to 0

被引:0
作者
Epstein, Charles L. [1 ]
Rachh, Manas [2 ]
Wang, Yuguan [3 ]
机构
[1] Flatiron Inst, Ctr Computat Math, 162 5th Ave, New York, NY 10010 USA
[2] Indian Inst Technol, Dept Math, Mumbai, India
[3] Univ Chicago, Dept Stat, 5747 S Ellis Ave, Chicago, IL 55455 USA
关键词
Type-I superconductor; Approximate solution; London penetration depth; Scattering; Error estimates; PSEUDO-CONVEX MANIFOLDS; HARMONIC INTEGRALS; BOUNDARY;
D O I
10.1007/s12220-025-02074-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to the memory of J.J. Kohn, who loved the Hodge decomposition. This paper provides an explicit formula for the approximate solution of the static London equations. These equations describe the currents and magnetic fields in a Type-I superconductor. We represent the magnetic field as a 2-form and the current as a 1-form, and assume that the superconducting material is contained in a bounded, connected set, Omega,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ,$$\end{document} with smooth boundary. The "London penetration depth" gives an estimate for the thickness of the layer near partial derivative Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} where the current is largely carried. In an earlier paper, [8], we introduced a system of Fredholm integral equations of second kind, on partial derivative Omega,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega ,$$\end{document} for solving the physically relevant scattering problems in this context. In real Type-I superconductors the penetration depth is very small, typically about 100nm, which often renders the integral equation approach computationally intractable. In this paper we provide an explicit formula for approximate solutions, with essentially optimal error estimates, as the penetration depth tends to zero. Our work makes extensive use of the Hodge decomposition of differential forms on manifolds with boundary, and thus evokes Kohn's work on the tangential Cauchy-Riemann equations.
引用
收藏
页数:54
相关论文
共 24 条
[1]  
Ainslie M., 2012, Transport AC loss in high temperature superconducting coils
[2]  
Askham T., fmm3dbie Documentation
[3]  
Askham T., fmm3d Documentation
[4]  
Calderon A.P., 1964, STUDIA MATH, V24, P113
[5]  
Colton D, 2013, CLASS APPL MATH
[6]  
Epstein C.L., 2022, Preprints
[7]  
Epstein C.L., 2010, COMMUN PUR APPL MATH
[8]   Debye source representations for type-I superconductors, I The static type I case [J].
Epstein, Charles L. ;
Rachh, Manas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
[9]   A Consistency Condition for the Vector Potential in Multiply-Connected Domains [J].
Epstein, Charles L. ;
Gimbutas, Zydrunas ;
Greengard, Leslie ;
Kloeckner, Andreas ;
O'Neil, Michael .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (03) :1072-1076
[10]  
Epstein CL., 2012, Debye sources and the numerical solution of the time harmonic Maxwell equations