Continuous Li+ Coordination Polymer Electrolyte for Fast Li+ Migration, Stable Electrolyte Interphases, and Safe Quasi-Solid Lithium Metal Batteries

被引:0
作者
Tian, Kaixin [1 ]
Wang, Mingshan [1 ,2 ]
Hu, Rui [1 ]
Li, Xinpeng [1 ]
He, Yike [1 ]
Song, Jialin [1 ]
Zhao, Bo [1 ]
Luo, Pan [3 ]
Li, Xing [1 ]
Cao, Guozhong [4 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610500, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Frontier Res Ctr Clean Energy, Beijing 100190, Peoples R China
[4] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
quasi-solid electrolyte; polymer electrolyte; solid electrolyte interphase; lithium metal battery; DENDRITE-FREE; ENERGY-DENSE; LIFE;
D O I
10.1021/acsnano.5c07967
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The advancement of quasi-solid lithium metal batteries strongly hinges on attaining fast Li+ transport, stable electrode/electrolyte interphases, and high safety. The present study reports a high-continuous Li+ coordination polymer electrolyte composed of a poly(1,3,5-trioxane) (PTXE) skeleton and mixed solvent of triethyl phosphate (TEP) and fluoroethylene carbonate (FEC). The continuous ether chains (-[C-O] n -) in PTXE coordinated with binary solvents and anions of dual lithium salt (TFSI- and DFOB-) optimize the solvent structure and establish rapid Li+ migration, achieving high Li+ conductivity (1.87 mS cm-1 at 25 degrees C) and Li+ transference number (0.64) prior to the liquid electrolyte. Simultaneously, via the synergistic induction and regulation exerted by polymer chain segments on the coordination of solvents and anions around Li+, phosphorus- and fluorine-rich cathodic and anodic electrolyte interphases are formed. Furthermore, flame-retardant TEP significantly improves the thermal stability at high temperature (60 degrees C) as well as under harsh mechanical testing. The assembly of a lithium metal battery with high loading mass of LiNi0.6Co0.2Mn0.2O2 (10 mg cm-2) and ultrathin Li (50 mu m) exhibits a high capacity retention rate of 87.1% with 120 cycles. Furthermore, a large-capacity pouch cell (7 Ah) with Li||LiNi0.8Co0.1Mn0.1O2 (40 mg cm-2) achieves high reversible capacity (6.58 Ah) with a high energy density of 505 Wh kg-1.
引用
收藏
页数:14
相关论文
共 69 条
[1]   Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries [J].
Chen, Guanghai ;
Zhang, Kun ;
Liu, Yiran ;
Ye, Lin ;
Gao, Yongsheng ;
Lin, Weiran ;
Xu, Huajie ;
Wang, Xinran ;
Bai, Ying ;
Wu, Chuan .
CHEMICAL ENGINEERING JOURNAL, 2020, 401
[2]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[3]   Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries [J].
Chen, Song ;
Chen, Qianwu ;
Ma, Jizhen ;
Wang, Jianjun ;
Hui, Kwan San ;
Zhang, Jintao .
SMALL, 2022, 18 (22)
[4]   Gel electrolytes with ionic liquid plasticiser for electrochromic devices [J].
Desai, S. ;
Shepherd, R. L. ;
Innis, P. C. ;
Murphy, P. ;
Hall, C. ;
Fabretto, R. ;
Wallace, G. G. .
ELECTROCHIMICA ACTA, 2011, 56 (11) :4408-4413
[5]   In Situ Formed Three-Dimensionally Conducting Polymer Electrolyte for Solid-State Lithium Metal Batteries With High-Cathode Loading [J].
Dong, Zhi-Wei ;
Du, Yun-Fei ;
Geng, Mei ;
Guo, Jia-Xin ;
Shen, Xin ;
Tang, Wen-Bo ;
Chen, Kai ;
Chen, Li-Feng ;
Liu, Xiao-Song ;
Cheng, Xin-Bing .
SUSMAT, 2025, 5 (02)
[6]   In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries [J].
Duan, Hui ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Shi, Ji-Lei ;
Shi, Yang ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY STORAGE MATERIALS, 2018, 10 :85-91
[7]   Are Porous Polymers Practical to Protect Li-Metal Anodes? - Current Strategies and Future Opportunities [J].
Gao, Shilun ;
Li, Zhenxi ;
Liu, Nian ;
Liu, Guoliang ;
Yang, Huabin ;
Cao, Peng-Fei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (31)
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Flame-Retardant ADP/PEO Solid Polymer Electrolyte for Dendrite-Free and Long-Life Lithium Battery by Generating Al, P-rich SEI Layer [J].
Han, Longfei ;
Liao, Can ;
Mu, Xiaowei ;
Wu, Na ;
Xu, Zhoumei ;
Wang, Jingwen ;
Song, Lei ;
Kan, Yongchun ;
Hu, Yuan .
NANO LETTERS, 2021, 21 (10) :4447-4453