WAVELET-BASED BLOCK LOW-RANK REPRESENTATIONS FOR HYPERSPECTRAL DENOISING

被引:2
作者
Zhao, Bin [1 ]
Sveinsson, Johannes R. [1 ]
Ulfarsson, Magnus O. [1 ]
Chanussot, Jocelyn [1 ,2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
[2] Univ Grenoble Alpes, GIPSA Lab, Grenoble INP, CNRS, F-38000 Grenoble, France
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
关键词
Denoising; hyperspectral image; wavelet; block low-rank representations; IMAGE; REDUCTION; SPARSE;
D O I
10.1109/IGARSS47720.2021.9554582
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a wavelet-based block low-rank representations (WBBLRR) denoising method for hyperspectral images (HSIs). WBBLRR uses 3-D wavelet transformation to decompose HSI into different blocks, where each block utilizes a low-rank representations model to obtain the denoised block, and then uses inverse 3-D wavelet transformation for all the denoised blocks to obtain the denoised HSI. The proposed method is evaluated by using both simulated and real hyperspectral datasets.
引用
收藏
页码:2484 / 2487
页数:4
相关论文
共 15 条
[1]   Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Rugege, Denis .
WETLANDS ECOLOGY AND MANAGEMENT, 2010, 18 (03) :281-296
[2]   Wavelet-based noise reduction in multispectral imagery [J].
Basuhail, AA ;
Kozaitis, SP .
ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY IV, 1998, 3372 :234-240
[3]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[4]   Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators [J].
Candes, Emmanuel J. ;
Sing-Long, Carlos A. ;
Trzasko, Joshua D. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (19) :4643-4657
[5]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[6]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[7]   Optimized Kernel Minimum Noise Fraction Transformation for Hyperspectral Image Classification [J].
Gao, Lianru ;
Zhao, Bin ;
Jia, Xiuping ;
Liao, Wenzhi ;
Zhang, Bing .
REMOTE SENSING, 2017, 9 (06)
[8]   Weighted Nuclear Norm Minimization with Application to Image Denoising [J].
Gu, Shuhang ;
Zhang, Lei ;
Zuo, Wangmeng ;
Feng, Xiangchu .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2862-2869
[9]   Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation [J].
He, Wei ;
Zhang, Hongyan ;
Zhang, Liangpei ;
Shen, Huanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :3050-3061
[10]   Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising [J].
Huang, Xinjian ;
Du, Bo ;
Tao, Dapeng ;
Zhang, Liangpei .
NEUROCOMPUTING, 2020, 399 :271-284