Molecular basis and key biological processes for myocardial regeneration: Transcriptomic analysis of acute myocardial infarction in a translational ovine model

被引:0
作者
Pedrozo, Cristian Nahuel Nunez [1 ]
Borzone, Francisco Raul [1 ]
Varela, Agustina [1 ]
Locatelli, Paola [1 ]
Olea, Daniela Fernanda [1 ]
Crottogini, Alberto Jose [1 ]
Giunta, Gustavo Ariel [2 ]
Cuniberti, Luis Alberto [1 ]
机构
[1] Univ Favaloro, CONICET, Lab Med Regenerat Cardiovasc, Inst Med Traslac Trasplante & Bioingn IMETTYB, Ciudad Autonoma Buenos Aires C1078AAI, Buenos Aires, Argentina
[2] Hosp Univ Fdn Favaloro, Ciudad Autonoma Buenos Aires C1093AAS, Buenos Aires, Argentina
关键词
Acute myocardial infarction; Transcriptome; Fetal heart; Regeneration; Bioinformatics; CARDIOMYOCYTE CELL-CYCLE; HEART-FAILURE;
D O I
10.1016/j.gep.2025.119396
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Recently, transcriptomic analysis has been key in identifying therapeutic targets in cardiovascular regeneration. The postnatal loss of cardiomyocyte proliferative capacity has been linked to the transition from glycolysis to fatty acid oxidation in rodent models of acute myocardial infarction (AMI). However, the transcriptomic profile of these processes in large mammals more similar to humans is still unknown. The aim of this study was to examine the transcriptomic profile, from the proliferative fetal stage to the non-regenerative infarcted adult stage, in an ovine AMI model. Methods: Samples consisted of fetal sheep hearts sequenced in our laboratory and adult sheep hearts (healthy, infarct, and infarct border) from the Gene Expression Omnibus repository (GSE164245). Results: Fetal tissue showed changes in epigenetic regulation and a predominance of glycolytic metabolism, whereas in the adult infarct core and border zones, there was a partial activation of glycolysis and a reduction in the expression of genes associated with beta-oxidation of fatty acids. Myocardial infarction in adult sheep triggers metabolic changes that partially mimic fetal regenerative processes. Conclusions: These findings will allow for a more precise understanding of the mechanisms underlying cardiac regeneration and facilitate the translation of regenerative therapies for clinical application in humans.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Evidence for Cardiomyocyte Renewal in Humans [J].
Bergmann, Olaf ;
Bhardwaj, Ratan D. ;
Bernard, Samuel ;
Zdunek, Sofia ;
Barnabe-Heider, Fanie ;
Walsh, Stuart ;
Zupicich, Joel ;
Alkass, Kanar ;
Buchholz, Bruce A. ;
Druid, Henrik ;
Jovinge, Stefan ;
Frisen, Jonas .
SCIENCE, 2009, 324 (5923) :98-102
[2]   Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression [J].
Cardoso, Alisson C. ;
Lam, Nicholas T. ;
Savla, Jainy J. ;
Nakada, Yuji ;
Pereira, Ana Helena M. ;
Elnwasany, Abdallah ;
Menendez-Montes, Ivan ;
Ensley, Emily L. ;
Petric, Ursa Bezan ;
Sharma, Gaurav ;
Sherry, A. Dean ;
Malloy, Craig R. ;
Khemtong, Chalermchai ;
Kinter, Michael T. ;
Tan, Wilson Lek Wen ;
Anene-Nzelu, Chukwuemeka G. ;
Foo, Roger Sik-Yin ;
Ngoc Uyen Nhi Nguyen ;
Li, Shujuan ;
Ahmed, Mahmoud Salama ;
Elhelaly, Waleed M. ;
Abdisalaam, Salim ;
Asaithamby, Aroumougame ;
Xing, Chao ;
Kanchwala, Mohammed ;
Vale, Gonalo ;
Eckert, Kaitlyn M. ;
Mitsche, Matthew A. ;
McDonald, Jeffrey G. ;
Hill, Joseph A. ;
Huang, Linzhang ;
Shaul, Philip W. ;
Szweda, Luke, I ;
Sadek, Hesham A. .
NATURE METABOLISM, 2020, 2 (02) :167-+
[3]   Metabolic Changes Associated With Cardiomyocyte Dedifferentiation Enable Adult Mammalian Cardiac Regeneration [J].
Cheng, Yuan-Yuan ;
Gregorich, Zachery ;
Prajnamitra, Ray P. ;
Lundy, David J. ;
Ma, Ting-Yun ;
Huang, Yu-Hsuan ;
Lee, Yi-Chan ;
Ruan, Shu-Chian ;
Lin, Jen-Hao ;
Lin, Po-Ju ;
Kuo, Chiung-Wen ;
Chen, Peilin ;
Yan, Yu-Ting ;
Tian, Rong ;
Kamp, Timothy J. ;
Hsieh, Patrick C. H. .
CIRCULATION, 2022, 146 (25) :1950-1967
[4]   Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells [J].
Chung S. ;
Dzeja P.P. ;
Faustino R.S. ;
Perez-Terzic C. ;
Behfar A. ;
Terzic A. .
Nature Clinical Practice Cardiovascular Medicine, 2007, 4 (Suppl 1) :S60-S67
[5]   ERBB2 triggers mammalian heart regeneration by promoting cardiorlyocyte dedifferentiation and proliferation [J].
D'Uva, Gabriele ;
Aharonov, Alla ;
Lauriola, Mattia ;
Kain, David ;
Yahalom-Ronen, Yfat ;
Carvalho, Silvia ;
Weisinger, Karen ;
Bassat, Elad ;
Rajchman, Dana ;
Yifa, Oren ;
Lysenko, Marina ;
Konfino, Tal ;
Hegesh, Julius ;
Brenner, Ori ;
Neeman, Michal ;
Yarden, Yosef ;
Leor, Jonathan ;
Sarig, Rachel ;
Harvey, Richard P. ;
Tzahor, Eldad .
NATURE CELL BIOLOGY, 2015, 17 (05) :627-U207
[6]   The Insulin-like Growth Factor Signalling Pathway in Cardiac Development and Regeneration [J].
Diaz del Moral, Sandra ;
Benaouicha, Maha ;
Munoz-Chapuli, Ramon ;
Carmona, Rita .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
[7]  
French Brent A, 2007, Drug Discov Today Dis Mech, V4, P185, DOI 10.1016/j.ddmec.2007.12.006
[8]   Left Ventricular Structural Remodeling in Health and Disease With Special Emphasis on Volume, Mass, and Geometry [J].
Gaasch, William H. ;
Zile, Michael R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (17) :1733-1740
[9]   Therapeutic approaches for cardiac regeneration and repair [J].
Hashimoto, Hisayuki ;
Olson, Eric N. ;
Bassel-Duby, Rhonda .
NATURE REVIEWS CARDIOLOGY, 2018, 15 (10) :585-600
[10]   Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction [J].
Haubner, Bernhard J. ;
Schneider, Johanna ;
Schweigmann, Ulrich ;
Schuetz, Thomas ;
Dichtl, Wolfgang ;
Velik-Salchner, Corinna ;
Stein, Joerg-I. ;
Penninger, Josef M. .
CIRCULATION RESEARCH, 2016, 118 (02) :216-221