Three-dimensional positively curved generalized Ricci solitons with SO(3)-symmetries

被引:0
作者
Podesta, Fabio [1 ]
Raffero, Alberto [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Generalized Ricci soliton; Gradient soliton; Cohomogeneity one action; T-DUALITY; FLOW; REGULARITY; GEOMETRY;
D O I
10.1016/j.aim.2025.110426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a one-parameter family of pairwise non-isometric, complete, positively curved, steady generalized Ricci solitons of gradient type on R3 that are invariant under the natural cohomogeneity one action of SO(3). In the context of generalized Ricci flow, this result represents the analogue of Bryant's construction of the complete rotationally invariant steady soliton for the Ricci flow. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
引用
收藏
页数:26
相关论文
共 24 条
[1]  
[Anonymous], 1974, Enseign. Math.
[2]  
Bryant R.L., Ricci flow solitons in dimension three with SO(3)-symmetries
[3]   STRINGS IN BACKGROUND FIELDS [J].
CALLAN, CG ;
FRIEDAN, D ;
MARTINEC, EJ ;
PERRY, MJ .
NUCLEAR PHYSICS B, 1985, 262 (04) :593-609
[4]  
Chow B., 2007, Math Surveys and Monographs, V135
[5]  
ESCHENBURG JH, 2000, J GEOM ANAL, V10, P109, DOI DOI 10.1007/BF02921808
[6]  
Fusi E, 2024, Arxiv, DOI arXiv:2404.15749
[7]  
Garcia-Fernandez M., 2021, AMS University Lecture Series, V76
[8]   Ricci flow, Killing spinors, and T-duality in generalized geometry [J].
Garcia-Fernandez, Mario .
ADVANCES IN MATHEMATICS, 2019, 350 :1059-1108
[9]   BISMUT RICCI FLAT GENERALIZED METRICS ON COMPACT HOMOGENEOUS SPACES [J].
Lauret, Jorge ;
Will, Cynthia .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (10) :7495-7519
[10]   The Stability of Generalized Ricci Solitons [J].
Lee, Kuan-Hui .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)