UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders

被引:338
作者
Zhang, Jing [1 ,4 ,5 ]
Fan, Deng-Ping [2 ,6 ]
Dai, Yuchao [3 ]
Anwar, Saeed [1 ,5 ]
Saleh, Fatemeh Sadat [1 ,4 ]
Zhang, Tong [1 ]
Barnes, Nick [1 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] Nankai Univ, CS, Tianjin, Peoples R China
[3] Northwestern Polytech Univ, Xian, Peoples R China
[4] ACRV, Canberra, ACT, Australia
[5] Data61, Eveleigh, NSW, Australia
[6] Incept Inst Artificial Intelligence IIAI, Abu Dhabi, U Arab Emirates
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
OBJECT DETECTION; FUSION; SEGMENTATION; ATTENTION; NETWORK; MODEL;
D O I
10.1109/CVPR42600.2020.00861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the first framework (UC-Net) to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection methods treat the saliency detection task as a point estimation problem, and produce a single saliency map following a deterministic learning pipeline. Inspired by the saliency data labeling process, we propose probabilistic RGB-D saliency detection network via conditional variational autoencoders to model human annotation uncertainty and generate multiple saliency maps for each input image by sampling in the latent space. With the proposed saliency consensus process, we are able to generate an accurate saliency map based on these multiple predictions. Quantitative and qualitative evaluations on six challenging benchmark datasets against 18 competing algorithms demonstrate the effectiveness of our approach in learning the distribution of saliency maps, leading to a new state-of-the-art in RGB-D saliency detection(1).
引用
收藏
页码:8579 / 8588
页数:10
相关论文
共 66 条
[1]  
Abid A, 2019, CONTRASTIVE VARIATIO
[2]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[3]  
Adrien Faruk Ahmed, 2016, ICLR
[4]  
Aliakbarian Mohammad Sadegh, 2019, ARXIV
[5]  
[Anonymous], 2016, IEEE Conf. Comput. Vis. Pattern Recog, DOI DOI 10.1109/CVPR.2016.257
[6]  
[Anonymous], PROC CVPR IEEE
[7]  
[Anonymous], 2017, IEEE ICCVW
[8]   PHiSeg: Capturing Uncertainty in Medical Image Segmentation [J].
Baumgartner, Christian F. ;
Tezcan, Kerem C. ;
Chaitanya, Krishna ;
Hotker, Andreas M. ;
Muehlematter, Urs J. ;
Schawkat, Khoschy ;
Becker, Anton S. ;
Donati, Olivio ;
Konukoglu, Ender .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :119-127
[9]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[10]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835