Cation-anion redox active β-Mn [N(CN)2]2 as new negative electrode material for Li-ion batteries with high capacity and rate capability

被引:0
作者
Zhang, Li [1 ]
Song, Qiong [1 ]
Wang, Chunyan [1 ]
Li, Zhandong [1 ]
Qiao, Xianji [2 ]
机构
[1] Jilin Engeering Normal Univ, Coll Biol & Food Engn, Changchun 130052, Peoples R China
[2] Suzhou Inst Nanotech & Nanob, i Lab, SEID, SIP, 398 Ruoshui Rd, Suzhou 2151213, Peoples R China
关键词
Dicyanamide; Lithium-ion battery; Anode materials; Electrochemical mechanism; NANOSTRUCTURED ANODE MATERIALS; RECENT PROGRESS; ENERGY-STORAGE; CONVERSION; INTERCALATION; CHALLENGES;
D O I
10.1016/j.electacta.2025.146824
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing high-capacity anodes is crucial for enhancing lithium battery energy density. (3-Mn[N(CN)2]2shows promise as a negative electrode material, delivering high specific capacities (approximate to 500 mAh g-1 over 200 cycles at 100 mA g-1) and superior to graphite (approximate to 372 mAh g-1), involving both cationic and anionic redox processes. Furthermore, we compared the differences in electrochemical performance between the alpha- and (3-Mn[N(CN)2]2, demonstrating that the former exhibits better cycling stability while the latter shows superior rate performance.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Reversible High Capacity and Reaction Mechanism of Cr2(NCN)3 Negative Electrodes for Li-Ion Batteries [J].
Arayamparambil, Jeethu Jiju ;
Chen, Kaixuan ;
Iadecola, Antonella ;
Mann, Markus ;
Qiao, Xianji ;
Fraisse, Bernard ;
Dronskowski, Richard ;
Stievano, Lorenzo ;
Sougrati, Moulay Tahar .
ENERGY TECHNOLOGY, 2020, 8 (03)
[2]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   In-operando Raman study of lithium plating on graphite electrodes of lithium ion batteries [J].
Cabanero, M. A. ;
Hagen, M. ;
Quiroga-Gonzalez, E. .
ELECTROCHIMICA ACTA, 2021, 374
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors [J].
Chen, Haomin ;
Wong, Lee Loong ;
Adams, Stefan .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2019, 75 (01) :18-33
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   Energy storage - a key technology for global energy sustainability [J].
Dell, RM ;
Rand, DAJ .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :2-17
[9]   Electrode reactions of manganese oxides for secondary lithium batteries [J].
Fang, Xiangpeng ;
Lu, Xia ;
Guo, Xianwei ;
Mao, Ya ;
Hu, Yong-Sheng ;
Wang, Jiazhao ;
Wang, Zhaoxiang ;
Wu, Feng ;
Liu, Huakun ;
Chen, Liquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) :1520-1523
[10]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18