Transformation of the Gibbs measure of the cubic NLS and fractional NLS under an approximated Birkhoff map

被引:0
作者
Genovese, Giuseppe [1 ]
Luca, Renato [2 ]
Montalto, Riccardo [3 ]
机构
[1] Univ British Columbia, Dept Math, 228-1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Univ Orleans, CNRS, Inst Denis Poisson, UMR 7013, Rue Chartres, F-45100 Orleans, France
[3] Univ Statale Milano, Dipartimento Matemat Federigo Enr, Via Saldini 50, I-20133 Milan, Italy
关键词
cubic Schr & ouml; dinger equations; Gibbs measure; quasi-invariance; Birkhoff normal form; NONLINEAR SCHRODINGER-EQUATION; KLEIN-GORDON EQUATION; LONG-TIME EXISTENCE; NORMAL-FORM;
D O I
10.4171/EMSS/94
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Gibbs measure associated to the periodic cubic nonlinear Schr & ouml;dinger equation. We establish a change of variable formula for this measure under the first step of the Birkhoff normal form reduction. We also consider the case of fractional dispersion.
引用
收藏
页码:27 / 69
页数:43
相关论文
共 31 条
[1]   Almost Global Existence for Some Hamiltonian PDEs with Small Cauchy Data on General Tori [J].
Bambusi, D. ;
Feola, R. ;
Montalto, R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (01)
[2]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[3]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[4]   Birkhoff normal form for some nonlinear PDEs [J].
Bambusi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) :253-285
[5]  
Berti M., 2018, Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions
[6]   Hamiltonian Birkhoff Normal Form for Gravity-Capillary Water Waves with Constant Vorticity: Almost Global Existence [J].
Berti, Massimiliano ;
Maspero, Alberto ;
Murgante, Federico .
ANNALS OF PDE, 2024, 10 (02)
[7]   Birkhoff Normal Form and Long Time Existence for Periodic Gravity Water Waves [J].
Berti, Massimiliano ;
Feola, Roberto ;
Pusateri, Fabio .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (07) :1416-1494
[8]   Construction of approximative and almost periodic solutions of perturbed linear Schrodinger and wave equations [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :201-230
[9]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[10]   Quasi-invariance of Gaussian measures transported by the cubic NLS with third-order dispersion on T [J].
Debussche, Arnaud ;
Tsutsumi, Yoshio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (03)