Some properties of a function originating from geometric probability for pairs of Hyperplanes intersecting with a convex body

被引:4
作者
Qi F. [1 ,2 ]
Mahmoud M. [3 ]
机构
[1] Institute of Mathematics, Henan Polytechnic University, Jiaozuo
[2] College of Mathematics, Inner Mongolia University for Nationalities, Tongliao
[3] Department of Mathematics, Faculty of Science, Mansoura University, Mansoura
关键词
Asymptotic Formula; Complete Monotonicity; Gamma Function; Inequality; Integral Representation; Monotonicity;
D O I
10.3390/mca21030027
中图分类号
学科分类号
摘要
In the paper, the authors derive an integral representation, present a double inequality, supply an asymptotic formula, find an inequality, and verify complete monotonicity of a function involving the gamma function and originating from geometric probability for pairs of hyperplanes intersecting with a convex body. © 2016 by the authors; licensee MDPI, Basel, Switzerland.
引用
收藏
相关论文
共 15 条
[11]  
Slavic D.V., On inequalities for G(x + 1)/G(x + 1/2) Univ Beograd Publ, Elektrotehn. Fak. Ser. Mat. Fiz, 498, 541, pp. 17-20, (1975)
[12]  
Copson E.T., Asymptotic Expansions, 55, (2004)
[13]  
Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W., NIST Handbook of Mathematical Functions, (2010)
[14]  
Furman E., Zitikis R., A monotonicity property of the composition of regularized and inverted-regularized gamma functions with applications, J. Math. Anal. Appl, 348, pp. 971-976, (2008)
[15]  
Furman E., Zitikis R., Monotonicity of ratios involving incomplete gamma functions with actuarial applications, J. Inequal. Pure Appl. Math, 9, pp. 1-6, (2008)