Trajectron plus plus : Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data

被引:658
作者
Salzmann, Tim [1 ,3 ]
Ivanovic, Boris [1 ]
Chakravarty, Punarjay [2 ]
Pavone, Marco [1 ]
机构
[1] Stanford Univ, Autonomous Syst Lab, Stanford, CA 94305 USA
[2] Ford Greenfield Labs, Palo Alto, CA USA
[3] Autonomous Syst Lab, Stanford, CA USA
来源
COMPUTER VISION - ECCV 2020, PT XVIII | 2020年 / 12363卷
关键词
Trajectory forecasting; Spatiotemporal graph modeling; Human-robot interaction; Autonomous driving;
D O I
10.1007/978-3-030-58523-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-of-the-art deterministic and generative methods.
引用
收藏
页码:683 / 700
页数:18
相关论文
共 53 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[3]  
Battaglia PW, 2016, ADV NEUR IN, V29
[4]  
Bowman S.R., 2015, P ANN M ASS COMP LIN
[5]  
Britz D., 2017, P C EMP METH NAT LAN, P1442, DOI 10.18653/v1/D17-1151
[6]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[7]  
Casas S., 2019, SpAGNN: spatially-aware graph neural networks for relational behavior forecasting from sensor data
[8]  
Casas S, 2018, PR MACH LEARN RES, V87
[9]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[10]  
Cho K., 2014, EMNLP 2014, DOI DOI 10.3115/V1/D14-1179