A Slimmer and Deeper Approach to Network Structures for Image Denoising and Dehazing

被引:2
作者
Xu, Boyan [1 ]
Yin, Hujun [1 ]
机构
[1] Univ Manchester, Manchester M13 9PL, Lancs, England
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2020, PT I | 2020年 / 12489卷
关键词
Image dehazing; Image denoising; Super-resolution;
D O I
10.1007/978-3-030-62362-3_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image denoising and dehazing are representatives of low-level vision tasks. The right trade-off between depth and computational complexity of convolutional neural networks (CNNs) is of significant importance to these problems. Wider feature maps and deeper network are beneficial for better performance, but would increase their complexity. In this paper, we explore a new way in network design, to encourage more convolution layers while decrease the width of feature maps. Such slimmer and deeper architectures can enhance the performance while maintain the same level of computational costs. We experimentally evaluate the performances of the proposed approach on denoising and dehazing, and the results demonstrate that it can achieve the state-of-the-art results on both quantitative measures and qualitative performances. Further experiments also indicate that the proposed approach can be adapted for other image restoration tasks such as super-resolution.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 38 条
[1]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[2]   Gated Context Aggregation Network for Image Dehazing and Deraining [J].
Chen, Dongdong ;
He, Mingming ;
Fan, Qingnan ;
Liao, Jing ;
Zhang, Liheng ;
Hou, Dongdong ;
Yuan, Lu ;
Hua, Gang .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1375-1383
[3]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[4]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Dynamic Scene Deblurring with Parameter Selective Sharing and Nested Skip Connections [J].
Gao, Hongyun ;
Tao, Xin ;
Shen, Xiaoyong ;
Jia, Jiaya .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3843-3851
[7]   Sample-based Monte Carlo Denoising using a Kernel-Splatting Network [J].
Gharbi, Michatel ;
Li, Tzu-Mao ;
Aittala, Miika ;
Lehtinen, Jaakko ;
Durand, Fredo .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04)
[8]   Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision [J].
Gu, Shuhang ;
Xie, Qi ;
Meng, Deyu ;
Zuo, Wangmeng ;
Feng, Xiangchu ;
Zhang, Lei .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 121 (02) :183-208
[9]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[10]   Single Image Haze Removal Using Dark Channel Prior [J].
He, Kaiming ;
Sun, Jian ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (12) :2341-2353