Enhancement of the photovoltaic performance of CH3NH3PbI3 perovskite solar cells by using polyvinylpyrrolidone additive

被引:0
作者
Li J.-F. [1 ]
Zhao C. [1 ]
Zhang H. [1 ]
Tong J.-F. [1 ]
Zhang P. [1 ]
Yang C.-Y. [1 ]
Xia Y.-J. [1 ]
机构
[1] Key Lab of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University, Lanzhou
来源
Faguang Xuebao/Chinese Journal of Luminescence | 2016年 / 37卷 / 01期
关键词
Additive; Perovskite solar cells; Polyvinylpyrrolidone;
D O I
10.3788/fgxb20163701.0056
中图分类号
学科分类号
摘要
We demonstrate a new one-step solution approach to prepare perovskite CH3NH3PbI3 films by adding polyvinylpyrrolidone (PVP) to the standard CH3NH3PbI3 precursor solution. The film morphologies, crystallinities, and optical properties of CH3NH3PbI3 perovskite layers are carefully studied by SEM, XRD, and UV-Vis. The results reveal that the perovskite film properties can be manipulated by incorporating a small amount of PVP. The absorbance of the film with PVP additive is significantly higher than the pristine film and the absorption peak is red shift by 20 nm, indicating the perovskite film with additive possessing better crystal structures. The use of PVP strongly affects the crystallization process of forming pure CH3NH3PbI3 and helps the formation of smooth film, leading not only to enhanced crystallization of CH3NH3PbI3 but also to significantly improved coverage of CH3NH3PbI3 on a planar substrate. The optimized power conversion efficiency (PCE) of CH3NH3PbI3 solar cells improved from 1.30% to 8.38% for the planar cell structure after the addition of 1% mass fraction of PVP. These results suggest that this new one-step solution approach is promising for controlling CH3NH3PbI3 growth to achieve high-performance perovskite solar cells. © 2016, Science Press. All right reserved.
引用
收藏
页码:56 / 62
页数:6
相关论文
共 18 条
[1]  
Noh J.H., Im S.H., Heo J.H., Et al., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13, pp. 1764-1769, (2013)
[2]  
Heo J.H., Im S.H., Noh J.H., Et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photon., 7, pp. 486-491, (2013)
[3]  
Stranks S.D., Eperon G.E., Grancini G., Et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, pp. 341-344, (2013)
[4]  
Xing G., Mathews N., Sun S., Et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, Science, 342, pp. 344-347, (2013)
[5]  
Jeng J.Y., Chiang Y.F., Lee M.H., Et al., CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25, pp. 3727-3732, (2013)
[6]  
Seo J., Park S., Kim Y.C., Et al., Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy Environ. Sci., 7, pp. 2642-2646, (2014)
[7]  
Sun S., Salim T., Mathews N., Et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., 7, pp. 399-407, (2014)
[8]  
Eperon G.E., Burlakov V.M., Docampo P., Et al., morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv. Funct. Mater., 24, pp. 151-157, (2013)
[9]  
Docampo P., Ball J.M., Darwich M., Et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun., 4, (2013)
[10]  
Conings B., Baeten L., Dobbelaere C.D., Et al., Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach, Adv. Mater., 26, pp. 2041-2046, (2014)