Deep Learning-based Anatomy-Aware Morph Model for Registration of Prostate Whole-Mount Histopathology to MRI

被引:0
作者
Zabihollahy, Fatemeh [1 ,2 ,3 ,4 ]
Wu, Holden H. [1 ]
Sisk, Anthony E. [5 ]
Reiter, Robert E. [6 ]
Raman, Steven S. [1 ]
Fleshner, Neil E. [3 ,4 ]
Yousef, George M. [2 ]
Sung, Kyunghyun [1 ]
机构
[1] UCLA, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[3] Univ Hlth Network, Princess Margaret Canc Ctr, Dept Surg, Div Urol, 700 Univ Ave, 6th Fl, Toronto, ON M5P 1Z5, Canada
[4] Univ Hlth Network, Princess Margaret Canc Ctr, Dept Surg, Dept Surg Oncol, 700 Univ Ave, 6th Fl, Toronto, ON M5P 1Z5, Canada
[5] UCLA, Dept Pathol, David Geffen Sch Med, Los Angeles, CA USA
[6] UCLA, Dept Urol, David Geffen Sch Med, Los Angeles, CA USA
来源
RADIOLOGY-IMAGING CANCER | 2025年 / 7卷 / 03期
基金
美国国家卫生研究院;
关键词
EX-VIVO; VALIDATION; FRAMEWORK; HISTOLOGY; IMAGES;
D O I
10.1148/rycan.240336
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To develop and evaluate a novel deep learning-based approach for registering presurgical MR and whole-mount histopathology (WMHP) images of the prostate. Materials and Methods: This retrospective study included patients who underwent prostate MRI before radical prostatectomy between July 2016 and June 2020. High-resolution ex vivo MRI was used as a reference to assess the structural relationship between in vivo MRI and WMHP. An Anatomy-Aware Morph model, a hybrid attention and convolutional neural network-based approach, was developed for multimodality prostate image registration. The pipeline included a module to estimate and correct distortion and motion between the prostate specimen and outside the human body. The dataset was divided into 270 and 45 patients for training and testing, respectively. Registration accuracy was evaluated using Dice similarity coefficient (DSC), Hausdorff distance, and target registration error. Results: The proposed approach was validated using 160 images extracted from 45 male patients in the testing dataset with the average age +/- SD of 64.0 years +/- 6.6. The method achieved a DSC and Hausdorff distance of 0.95 +/- 0.06 and 1.84 mm +/- 0.38. The two-dimensional target registration errors between 90 sets of landmarks on in vivo MR images and WMHP images were 3.93 mm +/- 0.80 and 1.18 mm +/- 0.28 before and after registration (P < .001). The developed algorithm significantly outperformed the state-of-the-art VoxelMorph method for multimodality prostate image registration (P < .0001 for both DSC and Hausdorff distance). Conclusion: The developed registration method successfully aligned presurgical prostate MR and histopathology images, facilitating automated mapping of prostate cancer from WMHP to MRI.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology [J].
Alyami, Wadha ;
Kyme, Andre ;
Bourne, Roger .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (01) :11-22
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]  
Bhattacharya I, arXiv, DOI [10.48550/arXiv.2008.00119, DOI 10.48550/ARXIV.2008.00119]
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   Estimating medical image registration error and confidence: A taxonomy and scoping review [J].
Bierbrier, Joshua ;
Gueziri, Houssem-Eddine ;
Collins, D. Louis .
MEDICAL IMAGE ANALYSIS, 2022, 81
[6]   Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge [J].
Bulten, Wouter ;
Kartasalo, Kimmo ;
Chen, Po-Hsuan Cameron ;
Strom, Peter ;
Pinckaers, Hans ;
Nagpal, Kunal ;
Cai, Yuannan ;
Steiner, David F. ;
van Boven, Hester ;
Vink, Robert ;
Hulsbergen-van de Kaa, Christina ;
van der Laak, Jeroen ;
Amin, Mahul B. ;
Evans, Andrew J. ;
van der Kwast, Theodorus ;
Allan, Robert ;
Humphrey, Peter A. ;
Gronberg, Henrik ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Tsuzuki, Toyonori ;
Hakkinen, Tomi ;
Egevad, Lars ;
Demkin, Maggie ;
Dane, Sohier ;
Tan, Fraser ;
Valkonen, Masi ;
Corrado, Greg S. ;
Peng, Lily ;
Mermel, Craig H. ;
Ruusuvuori, Pekka ;
Litjens, Geert ;
Eklund, Martin .
NATURE MEDICINE, 2022, 28 (01) :154-+
[7]   A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets [J].
Castillo, Richard ;
Castillo, Edward ;
Guerra, Rudy ;
Johnson, Valen E. ;
McPhail, Travis ;
Garg, Amit K. ;
Guerrero, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07) :1849-1870
[8]   Multimodal image registration of ex vivo 4 Tesla MRI with whole mount histology for prostate cancer detection [J].
Chappelow, Jonathan ;
Madabhushi, Anant ;
Rosen, Mark ;
Tomaszeweski, John ;
Feldman, Michael .
MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
[9]   Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information [J].
Chappelow, Jonathan ;
Bloch, B. Nicolas ;
Rofsky, Neil ;
Genega, Elizabeth ;
Lenkinski, Robert ;
DeWolf, William ;
Madabhushi, Anant .
MEDICAL PHYSICS, 2011, 38 (04) :2005-2018
[10]   Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks [J].
Eppenhof, Koen A. J. ;
Pluim, Josien P. W. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (02)