Mathematical modeling and analysis for Michaelis-Menten kinetics

被引:0
作者
Meral, Gulnihal [1 ]
Altintan, Derya [2 ]
机构
[1] Ankara Yildirim Beyazit Univ, Dept Math, TR-06010 Ankara, Turkiye
[2] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkiye
关键词
Michaelis-Menten model; Conservation relations; Existence uniqueness theorems;
D O I
10.1007/s10910-025-01739-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the Michaelis-Menten dynamics are studied by reducing the original system to a new set of two nonlinear ordinary differential equations obtained via conservation relations and variable transformations. A stability analysis of the reduced system reveals the existence of a stable equilibrium point. The properties of boundedness, positivity, existence, and uniqueness of the solutions are established by constructing two sequences, which are subsequently proven to be Cauchy sequences. Finally, numerical simulations are performed to validate the theoretical results and illustrate the expected behavior of the model.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
Altintan D., 2016, Sakarya Univ. J. Sci, V20, P617
[2]   Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting [J].
Ang, Tau Keong ;
Safuan, Hamizah M. .
BIOSYSTEMS, 2021, 202
[3]   The slow-scale stochastic simulation algorithm [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[4]  
Darboux G., 1878, CR HEBD ACAD SCI, V86, P1012
[5]   JUMP-DIFFUSION APPROXIMATION OF STOCHASTIC REACTION DYNAMICS: ERROR BOUNDS AND ALGORITHMS [J].
Ganguly, Arnab ;
Altintan, Derya ;
Koeppl, Heinz .
MULTISCALE MODELING & SIMULATION, 2015, 13 (04) :1390-1419
[6]   An Automated Model Reduction Method for Biochemical Reaction Networks [J].
Gasparyan, Manvel ;
Van Messem, Arnout ;
Rao, Shodhan .
SYMMETRY-BASEL, 2020, 12 (08) :1-24
[7]   Michaelis-Menten kinetics under spatially constrained conditions: Application to mibefradil pharmacokinetics [J].
Kosmidis, K ;
Karalis, V ;
Argyrakis, P ;
Macheras, P .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :1498-1506
[8]   OPTIMAL CONTROL APPLIED TO A GENERALIZED MICHAELIS-MENTEN MODEL OF CML THERAPY [J].
Ledzewicz, Urszula ;
Moore, Helen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01) :331-346
[9]   STABILITY AND BIFURCATION ANALYSIS IN A DELAY-INDUCED PREDATOR-PREY MODEL WITH MICHAELIS-MENTEN TYPE PREDATOR HARVESTING [J].
Liu, Ming ;
Hu, Dongpo ;
Meng, Fanwei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09) :3197-3222
[10]   Mathematical Analysis and Numerical Simulations for a System Modeling Acid-Mediated Tumor Cell Invasion [J].
Maerkl, Christian ;
Meral, Gulnihal ;
Surulescu, Christina .
INTERNATIONAL JOURNAL OF ANALYSIS, 2013,