Linguistic Structure Guided Context Modeling for Referring Image Segmentation

被引:115
作者
Hui, Tianrui [1 ,2 ]
Liu, Si [3 ]
Huang, Shaofei [1 ,2 ]
Li, Guanbin [4 ]
Yu, Sansi [5 ]
Zhang, Faxi [5 ]
Han, Jizhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Beihang Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[4] Sun Yat Sen Univ, Guangzhou, Peoples R China
[5] Tencent Mkt Solut, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT X | 2020年 / 12355卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Referring segmentation; Multimodal context; Linguistic structure; Graph propagation; Dependency Parsing Tree;
D O I
10.1007/978-3-030-58607-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Referring image segmentation aims to predict the foreground mask of the object referred by a natural language sentence. Multimodal context of the sentence is crucial to distinguish the referent from the background. Existing methods either insufficiently or redundantly model the multimodal context. To tackle this problem, we propose a "gather-propagate-distribute" scheme to model multimodal context by cross-modal interaction and implement this scheme as a novel Linguistic Structure guided Context Modeling (LSCM) module. Our LSCM module builds a Dependency Parsing Tree suppressed Word Graph (DPT-WG) which guides all the words to include valid multimodal context of the sentence while excluding disturbing ones through three steps over the multimodal feature, i.e., gathering, constrained propagation and distributing. Extensive experiments on four benchmarks demonstrate that our method outperforms all the previous state-of-the-arts.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 43 条
[21]   A Real-Time Cross-modality Correlation Filtering Method for Referring Expression Comprehension [J].
Liao, Yue ;
Liu, Si ;
Li, Guanbin ;
Wang, Fei ;
Chen, Yanjie ;
Qian, Chen ;
Li, Bo .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10877-10886
[22]   RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation [J].
Lin, Guosheng ;
Milan, Anton ;
Shen, Chunhua ;
Reid, Ian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5168-5177
[23]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[24]   Recurrent Multimodal Interaction for Referring Image Segmentation [J].
Liu, Chenxi ;
Lin, Zhe ;
Shen, Xiaohui ;
Yang, Jimei ;
Lu, Xin ;
Yuille, Alan .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1280-1289
[25]   Learning to Assemble Neural Module Tree Networks for Visual Grounding [J].
Liu, Daqing ;
Zhang, Hanwang ;
Wu, Feng ;
Zha, Zheng-Jun .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4672-4681
[26]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[27]   Generation and Comprehension of Unambiguous Object Descriptions [J].
Mao, Junhua ;
Huang, Jonathan ;
Toshev, Alexander ;
Camburu, Oana ;
Yuille, Alan ;
Murphy, Kevin .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :11-20
[28]   Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries [J].
Margffoy-Tuay, Edgar ;
Perez, Juan C. ;
Botero, Emilio ;
Arbelaez, Pablo .
COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 :656-672
[29]  
Kipf TN, 2017, Arxiv, DOI [arXiv:1609.02907, 10.48550/arXiv.1609.02907]
[30]  
Pennington J, 2014, P 2014 C EMP METH NA, DOI [DOI 10.3115/V1/D14-1162, 10.3115/v1/D14-1162, 10.3115/v1/d14-1162]