Linguistic Structure Guided Context Modeling for Referring Image Segmentation

被引:115
作者
Hui, Tianrui [1 ,2 ]
Liu, Si [3 ]
Huang, Shaofei [1 ,2 ]
Li, Guanbin [4 ]
Yu, Sansi [5 ]
Zhang, Faxi [5 ]
Han, Jizhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Beihang Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[4] Sun Yat Sen Univ, Guangzhou, Peoples R China
[5] Tencent Mkt Solut, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT X | 2020年 / 12355卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Referring segmentation; Multimodal context; Linguistic structure; Graph propagation; Dependency Parsing Tree;
D O I
10.1007/978-3-030-58607-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Referring image segmentation aims to predict the foreground mask of the object referred by a natural language sentence. Multimodal context of the sentence is crucial to distinguish the referent from the background. Existing methods either insufficiently or redundantly model the multimodal context. To tackle this problem, we propose a "gather-propagate-distribute" scheme to model multimodal context by cross-modal interaction and implement this scheme as a novel Linguistic Structure guided Context Modeling (LSCM) module. Our LSCM module builds a Dependency Parsing Tree suppressed Word Graph (DPT-WG) which guides all the words to include valid multimodal context of the sentence while excluding disturbing ones through three steps over the multimodal feature, i.e., gathering, constrained propagation and distributing. Extensive experiments on four benchmarks demonstrate that our method outperforms all the previous state-of-the-arts.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 43 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   MUTAN: Multimodal Tucker Fusion for Visual Question Answering [J].
Ben-younes, Hedi ;
Cadene, Remi ;
Cord, Matthieu ;
Thome, Nicolas .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2631-2639
[3]  
Chen D., 2014, P 2014 C EMP METH NA, P740, DOI [10.3115/v1/D14-1082, DOI 10.3115/V1/D14-1082]
[4]   See-Through-Text Grouping for Referring Image Segmentation [J].
Chen, Ding-Jie ;
Jia, Songhao ;
Lo, Yi-Chen ;
Chen, Hwann-Tzong ;
Liu, Tyng-Luh .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7453-7462
[5]  
Chen LC, 2016, Arxiv, DOI arXiv:1412.7062
[6]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Chen YW, 2019, Arxiv, DOI arXiv:1910.04748
[9]   Graph-Based Global Reasoning Networks [J].
Chen, Yunpeng ;
Rohrbach, Marcus ;
Yan, Zhicheng ;
Yan, Shuicheng ;
Feng, Jiashi ;
Kalantidis, Yannis .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :433-442
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338