Dynamic PCM for high-performance latent thermal energy storage: A numerical and parametric study

被引:0
作者
Agegnehu, Biruk [1 ]
Liebezeit, Karl [2 ]
Fasano, Matteo [1 ]
Morciano, Matteo [1 ]
Chiavazzo, Eliodoro [1 ]
机构
[1] Politecn Torino, Dept Energy, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Stuttgart, Stuttgart, Germany
关键词
Phase change material; Dynamic phase change material; Close contact melting; Latent thermal energy storage; Enthalpy-porosity method; Numerical modeling; PHASE-CHANGE MATERIALS; HEAT-TRANSFER ENHANCEMENT; MANAGEMENT; SYSTEM; CAVITY;
D O I
10.1016/j.icheatmasstransfer.2025.109277
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents a theoretical study on dynamic PCM (dynPCM) systems for latent thermal energy storage and high-flux thermal management. First, a 2D numerical model based on the enthalpy-porosity method is validated against established experimental data, accurately predicting the transient melt layer thickness, surface temperature of the heating plate, and melting speed. Results show that dynPCM shortens the charging and discharging times by up to 55% and 30.8%, respectively, compared to classical constrained melting (also termed conventional PCM). Moreover, dynPCM can store up to 35%-37% more energy in latent form under the same heat supply conditions. Building on this validated model, a parametric analysis is conducted using dimensionless groups (Stefan, P & eacute;clet, and Reynolds numbers) to examine the effects of thermophysical properties and external operating conditions on system performance at steady state. The study elucidates how latent heat, thermal conductivity, viscosity, and operating pressure collectively govern melt layer thickness, thermal resistance, and pumping power. Finally, an analytical correlation for predicting the heating plate surface temperature is proposed, significantly reducing the need for computationally expensive simulations.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins [J].
Al-Mudhafar, Ahmed H. N. ;
Nowakowski, Andrzej F. ;
Nicolleau, Franck C. G. A. .
ENERGY REPORTS, 2021, 7 :120-126
[2]   Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis [J].
Al-Yasiri, Qudama ;
Szabo, Marta .
JOURNAL OF BUILDING ENGINEERING, 2021, 36
[3]   Thermal management of electronic devices using carbon foam and PCM/nano-composite [J].
Alshaer, W. G. ;
Nada, S. A. ;
Rady, M. A. ;
Del Barrio, Elena Palomo ;
Sommier, Alain .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 89 :79-86
[4]   Towards the thermal management of electronic devices: A parametric investigation of finned heat sink filled with PCM [J].
Arshad, Adeel ;
Alabdullatif, Mohammed Ibrahim ;
Jabbal, Mark ;
Yan, Yuying .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 129
[5]   Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter [J].
Arshad, Adeel ;
Ali, Hafiz Muhammad ;
Khushnood, Shahab ;
Jabbal, Mark .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :861-872
[6]   3D natural convection melting in a cubical cavity with a heat source [J].
Bondareva, Nadezhda S. ;
Sheremet, Mikhail A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 115 :43-53
[7]   Accurate numerical modeling of convective heat transfer coefficient for a high power PLA-core toroidal electromagnetic coupler subject to cooling [J].
Boudara, F. Z. ;
Bouzekri, H. ;
Benhammadi, Y. ;
Cocquet, P-H ;
Rivaletto, M. ;
Pecastaing, L. ;
de Ferron, A. Silvestre ;
Le Guer, Y. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 170
[8]  
Chen L, 2023, ADVANCES IN FRONTIER RESEARCH ON ENGINEERING STRUCTURES, VOL 1, ICCASE 2022, P327, DOI [10.1201/9781003336631-55, 10.1016/j.applthermaleng.2023.120327]
[9]   Pressure loss equations for laminar and turbulent non-Newtonian pipe flow [J].
Chilton, RA ;
Stainsby, R .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1998, 124 (05) :522-529
[10]  
comsol, COMSOL Multiphysicsv. 5.6