Integrating computational materials science and materials informatics for the modeling of phase stability

被引:4
作者
Song, Xiaoyan [1 ]
Guo, Kai [1 ]
Lu, Hao [1 ]
Liu, Dong [1 ]
Tang, Fawei [1 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2021年 / 1卷 / 01期
基金
中国国家自然科学基金;
关键词
: Phase stability; computational materials science; materials informatics; databases; machine learning; data-driven materials design; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; THERMAL-STABILITY; SITE PREFERENCE; GRAIN-BOUNDARY; NANOCRYSTALLINE; SM; THERMODYNAMICS; PERFORMANCE; TI;
D O I
10.20517/jmi.2021.06
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With rapid developments in big data and artificial intelligence technologies, materials informatics has become a new paradigm of materials science and engineering. In this review, the progress of modeling studies of phase stability in alloys is presented, with particular attention given to the development of the paradigm from traditional computational materials science (CMS) to materials informatics. The features of CMS models for phase stability studies are compared with those of data-driven approaches. The advantages of data-driven modeling in the framework of materials informatics are revealed. The approaches for developing interpretable machine learning, which has been mainly integrated with the developed CMS models and material science theories, are also discussed. Finally, the prospects for data-driven materials design based on the stability control of the dominant phases with regards to performance are proposed.
引用
收藏
页数:25
相关论文
共 122 条
[1]   Computational phase diagrams for the Nd-based magnets based on the combined ab initio/CALPHAD approach [J].
Abe, Taichi ;
Chen, Ying ;
Saengdeejimg, Arkapol ;
Kobayashi, Yoshinao .
SCRIPTA MATERIALIA, 2018, 154 :305-310
[2]   Magnetic and structural properties of SmCo6.75-xFexZr0.25 compounds [J].
Al-Omari, IA ;
Zhou, J ;
Sellmyer, DJ .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 298 (1-2) :295-298
[3]   Review of thermal stability of nanomaterials [J].
Andrievski, R. A. .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (04) :1449-1460
[4]   A Critical Review of Machine Learning of Energy Materials [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Deng, Zhi ;
Ong, Shyue Ping .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[5]   CARLSSON-GELATT-EHRENREICH TECHNIQUE AND THE MOBIUS-INVERSION THEOREM [J].
CHEN, NX ;
REN, GB .
PHYSICAL REVIEW B, 1992, 45 (14) :8177-8180
[6]   MODIFIED MOBIUS INVERSE FORMULA AND ITS APPLICATIONS IN PHYSICS [J].
CHEN, NX .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1193-1195
[7]   Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys [J].
Dai, Dongbo ;
Xu, Tao ;
Wei, Xiao ;
Ding, Guangtai ;
Xu, Yan ;
Zhang, Jincang ;
Zhang, Huiran .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 175 (175)
[8]   Anisotropy and orbital moment in Sm-Co permanent magnets [J].
Das, Bhaskar ;
Choudhary, Renu ;
Skomski, Ralph ;
Balasubramanian, Balamurugan ;
Pathak, Arjun K. ;
Paudyal, Durga ;
Sellmyer, David J. .
PHYSICAL REVIEW B, 2019, 100 (02)
[9]   New frontiers for the materials genome initiative [J].
de Pablo, Juan J. ;
Jackson, Nicholas E. ;
Webb, Michael A. ;
Chen, Long-Qing ;
Moore, Joel E. ;
Morgan, Dane ;
Jacobs, Ryan ;
Pollock, Tresa ;
Schlom, Darrell G. ;
Toberer, Eric S. ;
Analytis, James ;
Dabo, Ismaila ;
DeLongchamp, Dean M. ;
Fiete, Gregory A. ;
Grason, Gregory M. ;
Hautier, Geoffroy ;
Mo, Yifei ;
Rajan, Krishna ;
Reed, Evan J. ;
Rodriguez, Efrain ;
Stevanovic, Vladan ;
Suntivich, Jin ;
Thornton, Katsuyo ;
Zhao, Ji-Cheng .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[10]   The Materials Genome Initiative, the interplay of experiment, theory and computation [J].
de Pablo, Juan J. ;
Jones, Barbara ;
Lind, Cora ;
Ozolins, Vidvuds ;
Ramirez, Arthur P. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (02) :99-117